Теорема об умножении вероятностей. Понятия суммы и произведения событий. Учреждение образования «Белорусская государственная

Глава 3.

Основные теоремы теории вероятностей и следствия из них

Теорема сложения вероятностей несовместных

Событий

Во второй главе было показано, как можно определить вероятность отдельного случайного события при выполнении определенных условий. Как известно, со случайными событиями можно проводить арифметические действия, главными из которых являются сложение и умножение событий. Теория вероятностей позволяет с помощью своих основных теорем найти вероятность суммы и произведения событий, т.е. определить либо вероятность появления хотя бы одного из рассматриваемых событий, либо вероятность одновременного появления этих событий.

К основным теоремам теории вероятностей относятся:

1. Теорема сложения вероятностей.

2. Теорема умножения вероятностей.

Рассмотрим теорему сложения вероятностей для частного случая. Предположим, что А и В несовместные события, причем будем считать, что вероятности этих событий известны, или могут быть найдены.

Теорема 3.1. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий, т.е.

Доказательство. Пусть n общее число всех равновозможных элементарных событий испытания, в котором могут появиться события А или В . Обозначим через т А и т В число элементарных событий благоприятствующих событиям А и В соответственно. Так как события А и В несовместны, то сумме этих событий А + В благоприятствуют т А + т В элементарных событий. Поэтому .

Теорема доказана.

Следствие. Вероятность появления одного из нескольких попарно несовместных событий равна сумме вероятностей этих событий, т.е.

Доказательство нетрудно провести, используя метод математической индукции.

Пример 3.1. В ящике находятся 8 белых, 5 черных и 10 красных шаров. Случайным образом выбирается один шар. Какова вероятность того, что этот шар не белый?

Решение. Пусть событие А – выбор черного шара, В – выбор красного шара. Тогда событие С = А + В определяет выбор не белого шара (либо черного, либо красного).

По классической формуле . По теореме 3.1 окончательно получаем .■

Пример 3.2. На фирме имеется две вакантные должности, на занятие которых претендуют трое мужчин и пять женщин. Найти вероятность того, что среди взятых на работу людей будет хотя бы один мужчина, если отбор претендентов производится случайным образом.

Решение. Пусть событие С состоит в том, что среди взятых на работу людей будет хотя бы один мужчина. Очевидно, что событие С произойдет в том случае, когда произойдет одно из следующих двух несовместных событий: А – приняты на работу двое мужчин; В – приняты на работу одна женщина и один мужчина. Таким образом, С = А + В .

Найдем вероятности событий А и В , используя классическую формулу, получим

и .

События А и В – несовместны, следовательно, можно применить теорему 3.1. Получаем . ■

При решении примера 3.2 не было рассмотрено только одно из возможных событий, состоящее в том, что будут приняты на работу две женщины. Обозначим его буквой D и найдем его вероятность. Применяя классическую формулу, получим

.

Нетрудно понять, что события А , В и D образуют полную группу для испытания: выбор двух человек из восьми. Найдем сумму вероятностей этих событий: . Полученный результат можно представить в общем виде.

Теорема 3.2. Сумма вероятностей событий, образующих полную группу, равна 1.

Доказательство. Пусть события А 1 , А 2 , …, А n образуют полную группу для некоторого испытания. Тогда по определению в результате этого испытания одно из событий обязательно произойдет, т.е. сумма этих событий является достоверным событием. Вероятность достоверного события равна 1. Следовательно, справедливо равенство:

Напомним, что по определению полной группы она состоит из несовместных событий. Тогда по следствию из теоремы 3.1 получаем

Теорема доказана.

Следствие . Сумма вероятностей противоположных событий равна 1.

Доказательство непосредственно следует из того, что противоположные события образуют полную группу, следовательно, по теореме 3.2 имеет место формула

(3.3)

где А и Ā – противоположные события.

Следствие доказано.

При решение задач чаще применяется преобразованная формула (3.3), а именно

(3.4)

Пример 3.3. Из девяти кандидатов для выбора на три должности пятеро имеют диплом с отличием. Все имеют одинаковые шансы быть выбранными на эти должности. Определить вероятность того, что среди выбранных будет хотя бы один, имеющий диплом с отличием.

Решение. Пусть событие А означает, что среди выбранных кандидатов хотя бы один имеет диплом с отличием. Очевидно, что событие Ā противоположное А будет состоять в том, что все три выбранных человека не имеют диплома с отличием. Найдем вероятность противоположного события. Для этого применим классическую формулу, получаем

.

По формуле (3.3) найдем вероятность события А :

. ■

Решение примера 3.3 может быть получено и другим, более длинным способом. Нетрудно понять, что событие А есть сумма следующих событий:

А 1 – среди выбранных только один кандидат с дипломом с отличием;

А 2 – среди выбранных два кандидата с дипломом с отличием;

А 3 – среди выбранных три кандидата с дипломом с отличием.

По классической формуле получаем

Очевидно, что события А 1 , А 2 , А 3 – несовместны, следовательно можно применить теорему 3.3. Таким образом

Понятно, что первый способ решения намного проще.

В выше рассмотренных теоремах и примерах предполагалась несовместность соответствующих случайных событий. Естественно, может возникнуть задача, в которой требуется найти вероятность появления хотя бы одного из совместных событий. Теорему 3.1 в этом случае применять нельзя. Существует более общий вид теоремы сложения вероятностей, который использует понятие вероятности произведения событий.

Теорема умножения вероятностей событий

Пусть рассматривается некоторое испытание, в котором возможно появление случайного события А . Если кроме условия испытания никаких ограничений для события А не существует, то вероятность события А называют безусловной вероятностью. Если же задаются некоторые дополнительные условия, то появляется условная вероятность этого события. Чаще всего дополнительные условия связаны с появлением другого случайного события. Итак, при анализе того или иного явления может возникнуть вопрос: влияет ли на возможность появления некоторого события А наступление другого случайного события В и если влияет, то как? Например, наступление В ведет к обязательному наступлению события А или, наоборот, исключает возможность появления события А , а может быть лишь изменяет значение вероятности. Легко понять, что если событие В является благоприятствующим событию А , то при наступлении события В событие А всегда наступает, или если А и В – два несовместных в данном испытании события, то при наступлении события В событие А никогда не будет происходить. Однако это так называемые крайние случаи. Наибольший интерес возникает тогда, когда наступление события В как-то изменяет (увеличивает или уменьшает) вероятность появления события А , не превращая его в достоверное или невозможное при новых условиях событие. Характеристикой такого влияния одного события на другое служит условная вероятность.

Условной вероятностью события А при условии В называется вероятность события А , вычисленная в предположении, что событие В уже произошло.

Аналогично можно определить условную вероятность события В , при условии, что событие А уже произошло.

Пример 3.4. Пусть в урне находятся 6 белых и 8 черных шаров. Из урны последовательно друг за другом случайным образом вынимают два шара, не возвращая их обратно. Найти вероятность того, что второй шар окажется белым, если первым был вынут также белый шар?

Решение . Пусть событие А состоит в том, что второй шар окажется белым, а событие В , что первый шар белый. В задаче требуется найти вероятность события А , при условии, что событие В произошло, т.е. найти . Если событие В произошло, то в урне осталось 13 шаров, из которых 5 белых. Следовательно, вероятность вынуть белый шар из 13, среди которых 5 белых равна .■

Отметим два момента.

Во-первых, для события А может быть найдена не только его условная вероятность, но и так называемая полная вероятность события, т.е. вероятность того, что второй шар окажется белым при выборе первым любого шара. О нахождении такой вероятности речь пойдет в пункте 3.4.

Во-вторых, условие примера может быть так изменено, что цвет первого выбранного шара вообще не будет влиять на вероятность появления события А . Будем считать, что шары после фиксирования их цвета возвращаются обратно в урну. Тогда, очевидно, вероятность события А не зависит от того, какого цвета был выбран первый шар, т.е. от появления (или не появления) события В . В этом случае , т.е. вероятность события А совпадает с условной вероятностью этого события. Сами же события А и В являются независимыми в данном испытании.

Два события А и В называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае, события называются зависимыми.

Из определения следует, что для независимых событий А и В справедливы формулы:

. (3.5)

Получим формулу для нахождения условной вероятности, используя классическое определение. Пусть испытание состоит из n равновозможных элементарных событий. Число событий, благоприятствующих событию А , равно т А ; событию В т В ; произведению событий АВ т АВ . Очевидно, что и . Так как событию В благоприятствует т В исходов, из которых только т А благоприятствуют А , то условная вероятность равна

. Окончательно, получаем

(3.6)

Необходимо обратить внимание на то, что знаменатель в формуле (3.6) отличен от нуля, так как по условию событие В может произойти, т.е. т В не равно нулю.

Рассуждая аналогично, можно получить формулу для условной вероятности события В : . Но, так как событие АВ ничем не отличается от события ВА и , то условную вероятность события В можно определить по формуле

(3.7)

В наиболее полных, применяющих аксиоматический подход, курсах теории вероятностей формулы (3.6) и (3.7) принимают за определение условной вероятности, а формулы (3.5) – за определение независимых событий.

Из формул (3.6) и (3.7) непосредственно вытекает следующая теорема умножения вероятностей.

Теорема 3.2. Вероятность одновременного появления двух случайных событий равна произведению вероятности одного события на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило, т.е.

(3.8)

Следствие. Вероятность одновременного появления нескольких случайных событий равна произведению вероятности одного события на условные вероятности всех остальных, при этом вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились, т.е.

Пример 3.5. В лотереи находятся 20 билетов, из которых 5 выигрышных. Случайным образом выбирают последовательно друг за другом 3 билета без возвращения. Определить вероятность того, что первый, второй и третий билеты будут выигрышными.

Решение. Пусть событие А состоит в том, что первым выберут выигрышный билет, событие В – в том, что второй билет будет выигрышным и, наконец, С – третий билет выигрышный. Очевидно, что .

Условная вероятность события В при условии, что событие А произошло, т.е. из лотереи был выбран один выигрышный билет, равна (всего билетов осталось 19, из них 4 выигрышных).

Условная вероятность события С при условии, что события А и В произошли, т.е. были выбраны два выигрышных билета, равна .

По следствию к теореме 3.2 вероятность произведения равна

Необходимо отметить, что задача 3.5 может быть решена с помощью классической формулы и формул комбинаторики:

.

Теорема 3.2 верна для любых случайных событий А и В . В частном случае, когда события А и В являются независимыми справедливо следующее утверждение.

Теорема 3.3. Вероятность одновременного появления двух несовместных событий А и В равна произведению вероятностей этих событий, т.е.

Доказательство. События А и В – независимы. По теореме 3.2 с учетом формулы (3.5), получим

Теорема доказана.

Итак, теорема 3.3 говорит о том, что вероятность произведения независимых событий находится по формуле (3.9). Верно и обратное утверждение.

Теорема 3.4. Если для двух событий верна формула (3.9), то эти события независимы.

Приведем без доказательства несколько важных свойств, справедливых для независимых событий.

1. Если событие В не зависит от А , то событие А не зависит от В .

2. Если события А и В – независимы, то независимы и события А и .

3. Если два события независимы, то независимы и противоположные им события.

Теорема 3.3 может быть обобщена на конечное число событий. Однако, прежде чем это сделать, необходимо более подробно остановиться на понятии независимости трех и более событий.

Для группы, состоящей из трех и более событий, существует понятие попарной независимости и независимости в совокупности.

События А 1 , А 2 , …, А n называются попарно независимыми , если любые два из этих событий независимы.

События А 1 , А 2 , …, А n называются независимыми в совокупности (или просто независимыми) , если они попарно независимы и независимы каждое событие и все возможные произведения всех остальных.

Например, три события А 1 , А 2 , А 3 независимы в совокупности, если независимы следующие события:

А 1 и А 2 , А 1 и А 3 , А 2 и А 3 ,

А 1 и А 2 А 3 , А 2 и А 1 А 3 , А 3 и А 1 А 2 .

Теорема 3.5. Если события А 1 , А 2 , …, А n независимы в совокупности, то вероятность их одновременного появления вычисляется по формуле:

Доказательство. Покажем, что формула верна для трех событий. Если событий больше трех, то справедливость формулы доказывается методом математической индукции.

Итак, покажем, что . По условию теоремы события А 1 , А 2 , А 3 независимы в совокупности. Следовательно, независимыми являются, например, два события А 1 А 2 и А 3 . По формуле (3.9), получим . По условию события А 1 и А 2 также независимы. Применив к первому сомножителю формулу (3.9), окончательно, получим .

Теорема доказана.

Необходимо отметить, что если события попарно независимы, то отсюда не следует, что они будут и независимы в совокупности. И, наоборот, если события независимы в совокупности, то они, очевидно, по определению будут и попарно независимы.

Рассмотрим пример событий попарно независимых, но зависимых в совокупности.

Пример 3.6. Пусть в коробке лежат 4 одинаковых карточки с написанными на них числами:


Случайным образом выбирает одну карточку. Событие А означает, что выбрали карточку, на которой есть число 1, событие В предполагает, что на выбранной карточке есть число 2, событие С – число 3. Выяснить являются ли события А , В и С попарно независимыми или независимыми в совокупности.

Решение. Вероятность каждого из событий А , В и С можно найти по классической формуле (всего карточек 4, на двух из них есть числа 1, 2, 3 соответственно): .

Покажем, что события А , В и С попарно независимы. Выберем любые два события, например, А и В . Вероятность их произведения , так как одновременное появление чисел 1 и 2 может быть только на одной карточке из четырех.

Таким образом, справедливо равенство . По теореме 3.4 события А и В независимы. Аналогично можно показать независимость событий В и С , а также событий А и С . Попарная независимость доказана.

Покажем, что эти события не являются независимыми в совокупности. Вероятность одновременного появления всех трех событий, т.е. появления всех трех чисел, равна , так как только на одной карточке из четырех есть все три числа. Произведение вероятностей событий равно . Таким образом, , следовательно, независимость в совокупности отсутствует. ■

Из теоремы умножения вероятностей и теоремы сложения вероятностей несовместных событий непосредственно следует теорема сложения вероятностей совместных событий.

\(\blacktriangleright\) Если для выполнения события \(C\) необходимо выполнение обоих совместных (которые могут произойти одновременно) событий \(A\) и \(B\) (\(C=\{A\) и \(B\}\) ), то вероятность события \(C\) равна произведению вероятностей событий \(A\) и \(B\) .

Заметим, что если события несовместны, то вероятность их одновременного происхождения равна \(0\) .

\(\blacktriangleright\) Каждое событие можно обозначить в виде круга. Тогда если события совместны, то круги должны пересекаться. Вероятность события \(C\) – это вероятность попасть в оба круга одновременно.

\(\blacktriangleright\) Например, при подбрасывании игральной кости найти вероятность \(C=\) {выпадение числа \(6\) }.
Событие \(C\) можно сформулировать как \(A=\) {выпадение четного числа} и \(B=\) {выпадение числа, делящегося на три}.
Тогда \(P\,(C)=P\,(A)\cdot P\,(B)=\dfrac12\cdot \dfrac13=\dfrac16\) .

Задание 1 #3092

Уровень задания: Равен ЕГЭ

В магазине продаются кроссовки двух фирм: Dike и Ananas. Вероятность того, что случайно выбранная пара кроссовок будет фирмы Dike, равна \(0,6\) . Каждая фирма может ошибиться в написании своего названия на кроссовках. Вероятность того, что фирма Dike ошибется в написании названия, равна \(0,05\) ; вероятность того, что фирма Ananas ошибется в написании названия, равна \(0,025\) . Найдите вероятность того, что случайно купленная пара кроссовок будет с правильным написанием названия фирмы.

Событие A: “пара кроссовок будет с правильным названием” равно сумме событий B: “пара кроссовок будет фирмы Dike и с правильным названием” и C: “пара кроссовок будет фирмы Ananas и с правильным названием”.
Вероятность события B равна произведению вероятностей событий “кроссовки будут фирмы Dike” и “название фирма Dike написала правильно”: \ Аналогично для события C: \ Следовательно, \

Ответ: 0,96

Задание 2 #166

Уровень задания: Равен ЕГЭ

Если Тимур играет белыми шашками, то он выигрывает у Вани с вероятностью 0,72. Если Тимур играет черными шашками, то он выигрывает у Вани с вероятностью 0,63. Тимур и Ваня играют две партии, причем во второй партии меняют цвет шашек. Найдите вероятность того, что Ваня выиграет оба раза.

Ваня выигрывает белыми с вероятностью \(0,37\) , а черными с вероятностью \(0,28\) . События “из двух партий Ваня выиграл белыми”\(\ \) и “из двух партий Ваня выиграл черными”\(\ \) – независимы, тогда вероятность их одновременного наступления равна \

Ответ: 0,1036

Задание 3 #172

Уровень задания: Равен ЕГЭ

Вход в музей охраняют два охранника. Вероятность того, что старший из них забудет рацию равна \(0,2\) , а вероятность того, что младший из них забудет рацию равна \(0,1\) . Какова вероятность того, что у них не будет ни одной рации?

Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. Тогда искомая вероятность равна \

Ответ: 0,02

Задание 4 #167

Уровень задания: Равен ЕГЭ

Прыгая с высоты 1 метр, Костя ломает ногу с вероятностью \(0,05\) . Прыгая с высоты 1 метр, Ваня ломает ногу с вероятностью \(0,01\) . Прыгая с высоты 1 метр, Антон ломает ногу с вероятностью \(0,01\) . Костя, Ваня и Антон одновременно прыгают с высоты 1 метр. Какова вероятность того, что из них только Костя сломает ногу? Ответ округлите до тысячных.

События “при прыжке с высоты 1 метр Костя сломал ногу”\(,\ \) “при прыжке с высоты 1 метр Ваня не сломал ногу”\(\ \) и “при прыжке с высоты 1 метр Антон не сломал ногу”\(\ \) – независимы, следовательно, вероятность их одновременного наступления равна произведению их вероятностей: \ После округления окончательно получаем \(0,049\) .

Ответ: 0,049

Задание 5 #170

Уровень задания: Равен ЕГЭ

Максим и Ваня решили поиграть в боулинг. Максим справедливо прикинул, что в среднем он выбивает страйк один раз в восемь бросков. Ваня справедливо прикинул, что в среднем он выбивает страйк один раз в пять бросков. Максим и Ваня делают ровно по одному броску (независимо от результата). Какова вероятность того, что среди них не будет страйков?

Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. При этом вероятность того, что Максим не выбьет страйк равна \ Вероятность того, что Ваня не выбьет страйк равна \(1 - 0,2 = 0,8\) . Тогда искомая вероятность равна \[\dfrac{7}{8}\cdot 0,8 = 0,7.\]

Ответ: 0,7

Задание 6 #1646

Уровень задания: Равен ЕГЭ

Антон и Костя играют в настольный теннис. Вероятность того, что Костя попадет своим коронным ударом в стол равна \(0,9\) . Вероятность того, что Антон выиграет розыгрыш, в котором Костя попытался нанести коронный удар равна \(0,3\) . Костя попытался попасть своим коронным ударом в стол. Какова вероятность того, что Костя действительно попадет своим коронным ударом и в итоге выиграет этот розыгрыш?

Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. При этом вероятность того, что Антон не выиграет розыгрыш, в котором Костя попытался нанести свой коронный удар равна \(1 - 0,3 = 0,7\) . Тогда искомая вероятность равна \

Часто бывает так, что вероятность некото-рого события можно найти, зная вероятности других событий, связанных с этим со-бытием.

Теорема сложения вероятностей.

?Теорема 2.6. (Теорема сложения вероятностей ). Вероят-ность суммы (объедине-ния; появления одного из них, безраз-лично какого) двух произвольных событий равна сумме вероят-ностей этих событий за вычетом вероятности их совместного появле-ния, т.е. P (A +B ) = P (A ) + P (B ) - P (AB ).

Следствие 1. Вероятность суммы (объединения) попарно не-совместных событий равна сумме их вероятностей, т.е. P (A 1 +A 2 +...+A n ) = = P (A 1) + P (A 2) + ... + P (A n ).

Следствие 2. Пусть A 1 , A 2 , ... , A n - полная группа попарно несовместных собы-тий. Тогда P (A 1)+P (A 2)+ ... +P (A n ) = 1.

Следствие 3. Сумма вероятностей противоположных собы-тий равна единице, т.е. P (A ) + P (`A ) = 1.

Пример 2.10. В урне 5 белых, 6 черных и 9 красных шаров. Какова вероятность того, что первый наугад вынутый шар окажется черным или красным?

Решение. Здесь имеется всего 20 элементарных исходов, из кото-рых появлению черного шара бла-гоприятствует 6, а появлению крас-ного - 9. Поэтому вероятность со-бытия A - появление черного шара: P (A ) = 6/20, а вероятность события B - появление красного шара: P (A ) = 9/20. Поскольку собы-тия A и B несовме-стны (вынимается всего один шар), то P (A +B ) = P (A ) + P (B ) = 6/20 + 9/20 = 0,75. Ответ : 0,75.

? Условная вероятность события B (P A (B)) - вероятность события B, вычислен-ная при условии, что событие A уже про-изошло . Если A и B - независимые события, то P A (B ) = P (B ), P B (A ) = P (A ).

Теорема умножения вероятностей.

?Теорема 2.7. (Теорема умножения вероятностей ). Вероят-ность произведения (пе-ресечения; совместного появления) двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при усло-вии, что первое собы-тие уже наступило, т.е. P (AB ) = P (A P A (B ) = P (B P B (A ).

Пример 2.11. На полке стоят 11 научно-популярных книг и 5 ху-дожественных. Какова вероят-ность того, что две подряд наугад взятые книги окажутся художественными?

Решение. Рассмотрим два события B 1 и B 2: B 1 - при первом испы-та-нии взята художественная книга, B 2 - при втором испытании взята ху-дожественная книга. По теореме 2.7 вероятность такого собы-тия равна P (B 1 B 2)=P (B 1)·P B 1 (B 2). Вероятность события B 1 P (B 1) = 5/16. По-сле первого испытания на полке останется 15 книг, из которых 4 ху-доже-ственные, по-этому условная веро-ятность P B 1 (B 2) = 4/15. Отсюда искомая вероятность равна: P (B 1 B 2) = . Ответ : 1/12.


Следствие 1. Вероятность совместного появления несколь-ких событий равна про-изведению вероятности одного из них на условные вероят-ности всех остальных, при-чем вероятность ка-ждого последующего события вычис-ляют при условии, что все предыдущие события уже наступили, т.е. P (A 1 ·A 2 ·...·A n ) = P (A 1)·P A 1 (A 2) P A 1A 2 (A 3). · ... ·P A 1 A 2… An -1 (A n ).

Пример 2.12. Из десяти карточек составлено слово «МАТЕМА-ТИКА». Из них школьник нау-дачу выбирает поочередно четыре кар-точки и приставляет одну к другой. Какова вероятность того, что по-лучится слово «ТЕМА»?

Решение. Введем события A 1 , A 2 , A 3 , A 4 , состоящие в том, что пер-вая выбранная буква - Т, вторая - Е, тре-тья - М и четвертая - А. Нам нужно найти вероят-ность произведения этих событий. По след-ствию 1 из тео-ремы 2.7 имеем:

P (A 1 ·A 2 ·A 3 ·A 4) = P (A 1)·P A 1 (A 2)·P A 1A 2 (A 3)·P A 1A 2A 3 (A 4) = Ответ : 1/420.

Следствие 2. Если A 1 ,A 2 ,...,A n - независимые события, то ве-роятность их произве-дения (совместного появления) равна про-изведению вероятностей этих собы-тий, т.е. P (A 1 ·A 2 · ... ·A n ) = P (A 1)·P (A 2)· ... ·P (A n ).

Пример 2.13. Два стрелка независимо один от другого де-лают по одному выстрелу по од-ной и той же мишени. Вероятность поражения мишени первым стрелком - 0,7, вторым - 0,8. Какова вероят-ность того, что ми-шень будет поражена?

Решение. Пусть событие А состоит в том, что мишень поразил пер-вый стрелок, а событие В - в том, что ми-шень поразил второй стрелок. По условию Р (А ) = 0,7 и Р (В ) =0,8.

1-й способ . Рассмотрим противоположные события:`A - промах первого стрелка,`B - промах вто-рого. По следствию 3 из тео-ремы 2.6 получаем Р (`A ) = 1-0,7 = 0,3 и Р (`B ) = 1-0,8 = 0,2. Произведение собы-тий `A ·`B означает промах обоих стрелков. По смыслу задачи собы-тия А и В являются незави-симыми, поэтому и противоположные со-бытия`A и`B также будут независимыми. По следствию 2 из теоремы 2.7 получаем вероят-ность того, что оба стрелка промахнутся: Р(`А·`В) = 0,3·0,2 = 0,06. Нас же интересу-ет вероятность противоположного события, состоящего в том, что мишень поражена. По-этому искомую вероят-ность мы находим по следствию 3 из теоремы 2.6: 1 - 0,06 = 0,94.

2-й способ . Искомая событие (мишень будет поражена хотя бы од-ним стрелком) есть сумма собы-тий A и B . По теореме 2.6. P (A +B ) = P (A ) + P (B ) - P (AB ) = 0,7 + 0,8 - 0,7·0,8 = 1,5 - 0,56 = 0,94. Ответ : 0,94.

Пример 2.14 . В студенческой группе 25 человек. Какова вероят-ность того, что дни рождения хотя бы у двоих совпадают?

Решение . Вероятность того, что дни рождения у двух произвольно взятых людей совпадают, равна 1/365 (считаем, что попадания дня рождения на любой день в году - равновозможные случаи). Тогда ве-роятность того, что дни рожде-ния двух людей не совпадают, т.е. веро-ятно-сть противопо-ложного события равна 1-1/365 = 364/365. Вероят-ность того, что день рожде-ния третьего отличается от дней рождения двух предыдущих, составит 363/365 (363 случая из 365 благо-приятст-вуют этому событию). Рассуждая аналогично, находим, что для 25-го члена группы эта веро-ятность равна 341/365. Далее найдем вероят-ность того, что дни рождения всех 25 членов группы не совпадают. По-скольку все эти события (несовпадение дня рождения каждого оче-редного члена группы с днями ро-ждения преды-дущих) независимы, то по следствию 2 из теоремы 2.7 получаем:

P (A 2 A 3 ... A 25) = · · ... · » 0,43.

Это вероятность того, что дни рождения у всех 25 человек не сов-падают. Ве-роятность противопо-ложного события будет вероятностью того, что хотя бы у двоих дни рождения совпадают, т.е. иско-мой веро-ятностью P » 1-0,43 = 0,57. Ответ : » 0,57.

Формула полной вероятно-сти.

?Теорема 2.8. Пусть B 1 , B 2 , …, B n - полная группа попарно не-совместных событий. Ве-роятность события A , которое может наступить лишь при условии наступления од-ного из событий B 1 , B 2 , …, B n , равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность собы-тия A , т.е.

P(A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + … + P (B n P Bn (A ).

Эта формула называется формулой полной вероятно-сти . События B 1 , B 2 , …, B n , удовлетворяющие условию теоремы 2.8, называют гипотезами .

Пример 2.15. Турист равновероятно выбирает один из трех маршру-тов: конный, водный и горный. Вероятность, что он успешно преодолеет путь при выборе конного способа передвижения, равна 0,75, при выборе водного пути - 0,8, при выборе горного маршрута - 0,55. Найдите вероятность, что турист успешно преодолеет весь путь при любом выборе маршрута.

Решение . Введем события: A - «Турист успешно преодолеет весь путь при любом выборе маршрута», B 1 , B 2 , B 3 - выбран соответственно, конный, водный и горный маршрут. Поскольку выбор маршрута равновероятен, то вероятно-сти выбора каждого маршрута P (B 1) = P (B 2) = P (B 3) = 1/3. По условию P B 1 (A ) = 0,75; P B 2 (A ) = 0,8; P B 3 (A ) = 0,55. Тогда по формуле полной вероятности: P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = (1/3)·0,75 + (1/3) ·0,8 + (1/3)0,55 = 0,7.

Ответ : 0,7.

?Теорема 2.9. Условная вероятность любой гипотезы B i (i = 1, 2, … ,n ) вычисляется по формуле Бейеса :

Формула Бейеса позволяет переоценить вероятности гипотез после того, как ста-но-вится известным результат испытания, в итоге которого появилось событие A .

Пример 2.16. Имеется три набора микросхем, первый из которых содержит 100, второй 300 и тре-тий 600 микросхем. Вероятность того, что микросхема, взятая наугад из первого набора, исправна, равна 0,9, а для второго и третьего наборов - соответственно 0,85 и 0,8. Какова вероятность того, что: а) произвольно взятая микросхема исправна: б) исправная микросхема извлечена из второго на-бора?

Решение . а) В данном случае имеется три гипотезы, вероятности которых P (B 1) = 0,1, P (B 2) = 0,3, P (B 3) = 0,6. Пользуясь формулой полной вероятности, находим P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = 0,1·0,9 + 0,3·0,85 + 0,6·0,8 = 0,825.

б) Допустим, что искомое событие A произошло - извлечена ис-правная микросхема. Найдем ве-ро-ятность P A (B 2) того, что эта микро-схема извлечена из второго набора. Согласно формулы Бейеса,

Ответ : а) 0,825; б) 17/55.

Пример 2.17. Из 10 учеников, которые пришли на экзамен по ма-тематике, трое подготовились от-лично, четверо - хорошо, двое - удовлетворительно, а один совсем не готовился. В билетах 20 вопро-сов. Отлично подготовившиеся ученики могут ответить на все 20 во-просов, хорошо - на 16 вопросов, удовлетворительно - на 10, и непод-готовившийся - на 5 вопросов. Каждый ученик получает наугад 3 во-проса из 20. Ученик, приглашенный первым, ответил на все 3 вопроса. Какова вероятность того, что он отличник?

P A (B 1). По фор-муле Бейеса P A (B 1) = » 0,58.

Как видим, искомая вероятность сравнительно не велика, Поэтому учителю придется предложить ученику еще несколько дополнитель-ных вопросов. Ответ : 0,58.

Теорема умножения вероятностей двух произвольных событий: вероятность произведения двух произвольных событий равна произведению вероятности одного из событий на условную вероятность другого события, при условии, что первое уже произошло:

P(AB)=P(A)P(B|A) = P(B)P(A|B). (10)

Доказательство (не строгое): докажем теорему умножения для схемы шансов (равновероятных гипотез). Пусть возможные исходы опыта являются n шансами. Предположим, что событию A благоприятны m шансов (на рис. 11 имеют штриховку); событию B - k шансов; одновременно событиям A и B (AB) - l шансов (на. рис. 11 имеют светлую штриховку).

Рисунок 11

Очевидно, что m+k-l=n. По классическому способу вычисления вероятностей P(AB)=l/n; P(A)=m/n; P(B)=k/n. А вероятность P(B|A)=l/m, поскольку известно, что один из m шансов события A произошел, а событию B благоприятны l подобных шансов. Подставив данные выражения в теорему (10), получим тождество l/n=(m/n)(l/m). Теорема доказана.

Теорема умножения вероятностей трёх произвольных событий:

P(ABC)=|AB=D|=P(DC)=P(D)P(C|D)=P(AB)P(C|AB)=P(A)P(B|A)P(C|AB).(11)

По аналогии можно записать теоремы умножения вероятностей для большего количества событий.

Следствие 1. Если событие A не зависит от B, то и событие B не зависит от A.

Доказательство. Т.к. событие A не зависит от B, то по определению независимости событий P(A)=P(A|B)=P(А|). Требуется доказать, что P(B)=P(B|A).

По теореме умножения P(AB)=P(A)P(B|A)=P(B)P(A|B), следовательно, P(A)P(B|A)=P(B)P(A). Предполагая, что P(A)>0, разделим обе части равенства на P(A) и получим: P(B)=P(B|A).

Из следствия 1 вытекает, что два события независимы, если появление одного из них не изменяет вероятность появления другого. На практике, зависимыми являются события (явления), связанные между собой причинно-следственной связью.

Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий. Т.е. если события A и B независимы, то

P(AB)=P(A)P(B). (11)

Доказательство очевидно, поскольку для независимых событий P(B|A)=P(B).

Тождество (11) наряду с выражениями (12) и (13) являются необходимыми и достаточными условиями независимости двух случайных событий A и B.

P(A)=P(A|B); P(A)=P(А|); P(A|B)=P(А|); (12)

P(B)=P(B|A); P(B)=P(B|); P(B|A)=P(B|). (13)

Надёжность некоторой системы повышается двукратным резервированием (см. рис. 12). Вероятность безотказной работы первой подсистемы (в течение некоторой наработки) равна 0.9, второй - 0,8. Определить вероятность отказа системы в целом в течение заданной наработки, если отказы подсистем независимы.

Рисунок 12 - Двукратно резервированная система

E: исследование безотказности двукратно резервированной системы управления;

A 1 ={безотказная работа (в течение некоторой наработки) первой подсистемы}; P(A 1)=0,9;

A 2 ={безотказная работа второй подсистемы}; P(A 2)=0,8;

A={безотказная работа системы в целом}; P(A)=?

Решение. Выразим событие A через события A 1 и A 2 вероятности которых известны. Поскольку для безотказной работы системы достаточно безотказной работы хотя бы одного из её подсистем, то очевидно A=A 1 A 2.

Применяя теорему сложения вероятностей получим: P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1 A 2). Вероятность совместного наступления событий A 1 и A 2 определим по теореме умножения вероятностей: P(A 1 A 2)=P(A 1)P(A 2 |A 1). Учитывая, что (по условию) события A 1 и A 2 независимы, P(A 1 A 2)=P(A 1)P(A 2). Таким образом, вероятность безотказной работы системы равна P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1)P(A 2)=0,9+0,8-0,90,8=0,98.

Ответ: вероятность безотказной работы системы в течение заданной наработки равна 0,98.

Замечание. В примере 20 возможен другой способ определения события A через события A 1 и A 2: , т.е. отказ системы возможен при одновременном отказе обоих её подсистем. Применяя теорему умножения вероятностей независимых событий получим следующее значение вероятности отказа системы: . Следовательно, вероятность безотказной работы системы в течение заданной наработки равна.

Пример 21 (парадокс независимости)

E: бросается две монеты.

A={выпадение герба на первой монете}, P(A)=0,5;

B={выпадение герба на второй монете}, P(B)=0,5;

C={выпадение герба только на одной из монет}, P(C)=0,5.

События A, B и C попарно независимы, поскольку выполняются условия независимости двух событий (11)-(13):

P(A)=P(A|B)=0,5; P(B)=P(B|C)=0,5; P(C)=P(C|A)=0,5.

Однако P(A|BC)=0P(A); P(A|C)=1P(A); P(B|AC)=0P(B); P(C|AB)=0P(C).

Замечание. Попарная независимость случайных событий не означает их независимость в совокупности.

Случайные события называются независимыми в совокупности, если вероятность наступления каждого из них не изменяется с наступлением любой комбинации остальных событий. Для случайных событий A 1, A 2, … A n, независимых в совокупности, справедлива следующая теорема умножения вероятностей (необходимое и достаточное условие независимости в совокупности n случайных событий):

P(A 1 A 2 …A n)=P(A 1)P(A 2)…P(A n). (14)

Для примера 21 условие (14) не выполняется: P(ABC)=0P(A)P(B)P(C)=0,50,50,5=0,125. Следовательно, попарно независимые события A, B и C зависимы в совокупности.

Пример 22

В коробке находятся 12 транзисторов, три из которых неисправны. Для сборки двухкаскадного усилителя случайным образом извлекаются два транзистора. С какой вероятностью собранный усилитель будет неисправен?

E: выбор двух транзисторов из коробки с 9-ю исправными и 3-мя неисправными транзисторами;

A={неисправность собранного усилителя}; P(A)=?

Решение. Очевидно, что собранный двухкаскадный усилитель будет неисправен, если будет неисправен хотя бы один из двух отобранных для сборки транзисторов. Поэтому переопределим событие A следующим образом:

A={хотя бы один из двух отобранных транзисторов неисправен};

Определим следующие вспомогательные случайные события:

A 01 ={неисправен только первый из двух отобранных транзисторов};

A 10 ={неисправен только второй из двух отобранных транзисторов};

A 00 ={неисправны оба отобранных транзистора};

Очевидно, что A=A 01 A 10 A 00 (для наступления события A необходимо наступление хотя бы одного из событий A 01 или A 10 или A 00), причем события A 01, A 10 и A 00 несовместны (вместе произойти не могут), поэтому вероятность события найдем по теореме сложения вероятностей несовместных событий:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00).

Для определения вероятностей событий A 01, A 10 и A 00 введем вспомогательные события:

B 1 ={первый отобранный транзистор неисправен};

B 2 ={второй отобранный транзистор неисправен}.

Очевидно, что A 01 =B 1 ; A 10 =B 2 ; A 00 =B 1 B 2 ; поэтому для определения вероятностей событий A 01, A 10 и A 00 применим теорему умножения вероятностей.

P(A 01)=P(B 1)=P(B 1)P(|B 1),

где P(B 1) - вероятность того, что первый отобранный транзистор будет неисправен; P(|B 1) - вероятность того, что второй отобранный транзистор будет исправен, при условии, что первый отобранный транзистор неисправен. Применяя классический способ вычисления вероятностей, P(B 1)=3/12, а P(|B 1)=9/11 (поскольку после выбора первого неисправного транзистора в коробке осталось 11 транзисторов, 9 из которых исправны).

Таким образом, P(A 01)=P(B 1)=P(B 1)P(|B 1)=3/129/11=0,20(45). По аналогии:

P(A 10)=P(B 2)=P()P(B 2 |)=9/123/11=0,20(45);

P(A 00)=P(B 1 B 2)=P(B 1)P(B 2 |B 1)=3/122/11=0,041(6).

Подставим полученные значения вероятностей A 01, A 10 и A 00 в выражение для вероятности события A:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00)=3/129/11+9/123/11+3/122/11=0,45(45).

Ответ: вероятность того, что собранный усилитель будет неисправен, равна 0,4545.

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.