Что такое периодический закон менделеева. Большая энциклопедия нефти и газа

Периодический закон химических элементов - фундаментальный закон природы, устанавливающий периодичность изменения свойств химических элементов по мере увеличения зарядов ядер их атомов. Датой открытия закона считается 1 марта (17 февраля по старому стилю) 1869 г., когда Д. И. Менделеев завершил разработку «Опыта системы элементов, основанной на их атомном весе и химическом сходстве». Термин «периодический закон» («закон периодичности») ученый впервые употребил в конце 1870 г. По словам Менделеева, открытию периодического закона способствовали «три рода данных». Во‑первых, наличие достаточно большого числа известных элементов (63); во‑вторых, удовлетворительная изученность свойств большинства из них; в‑третьих, то, что атомные веса многих элементов были определены с хорошей точностью, благодаря чему химические элементы можно было расположить в естественный ряд сообразно увеличению их атомных весов. Решающим условием открытия закона Менделеев считал сравнение всех элементов по величинам атомных весов (ранее сравнивались лишь химически сходные элементы).

Классическая формулировка периодического закона, данная Менделеевым в июле 1871 г., гласила: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Эта формулировка сохраняла силу на протяжении более 40 лет, но периодический закон оставался лишь констатацией фактов и не имел физического обоснования. Оно стало возможным лишь в середине 1910‑х гг., когда была разработана ядерно-планетарная модель атома (см. Атом) и установлено, что порядковый номер элемента в периодической системе численно равен заряду ядра его атома. В итоге стала возможной физическая формулировка периодического закона: «Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от величин зарядов ядер (Z) их атомов». Она широко используется до сих пор. Сущность периодического закона может быть выражена и другими словами: «Конфигурации внешних электронных оболочек атомов периодически повторяются по мере роста Z»; это своеобразная «электронная» формулировка закона.

Существенная особенность периодического закона заключается в том, что, в отличие от некоторых других фундаментальных законов природы (например, закона всемирного тяготения или закона эквивалентности массы и энергии), он не имеет количественного выражения, т. е. не может быть записан в виде какой‑либо математической формулы или уравнения. Между тем и сам Менделеев, и другие ученые пытались искать математическое выражение закона. В виде формул и уравнений могут быть количественно выражены различные закономерности построения электронных конфигураций атомов в зависимости от значений главного и орбитального квантовых чисел. Что же касается периодического закона, то он имеет наглядное графическое отражение в виде периодической системы химических элементов, представленной главным образом различными видами таблиц.

Периодический закон - универсальный закон для всей Вселенной, проявляющийся везде, где существуют материальные структуры атомного типа. Однако периодически изменяются по мере роста Z не только конфигурации атомов. Оказалось, что строение и свойства атомных ядер также изменяются периодически, хотя сам характер периодического изменения здесь много сложнее, чем в случае атомов: в ядрах происходит закономерное построение протонных и нейтронных оболочек. Ядра, в которых эти оболочки заполнены (в них содержится 2, 8, 20, 50, 82, 126 протонов или нейтронов), получили название «магических» и рассматриваются как своеобразные границы периодов периодической системы атомных ядер.

Периодический закон Д. И. Менделеева: Свойства простых тел, а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов.(Свойства эл-тов находяхтся в периодической зависимости от заряда атомов их ядер).

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественнойклассификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах. При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

ЗАНЯТИЕ 5 10-й класс (первый год обучения)

Периодический закон и система химических элементов д.И.Менделеева План

1. История открытия периодического закона и системы химических элементов Д.И.Менделеева.

2. Периодический закон в формулировке Д.И.Менделеева.

3. Современная формулировка периодического закона.

4. Значение периодического закона и системы химических элементов Д.И.Менделеева.

5. Периодическая система химических элементов – графическое отражение периодического закона. Строение периодической системы: периоды, группы, подгруппы.

6. Зависимость свойств химических элементов от строения их атомов.

1 марта (по новому стилю) 1869 г. считается датой открытия одного из важнейших законов химии – периодического закона. В середине XIX в. было известно 63 химических элемента, и возникла потребность в их классификации. Попытки такой классификации предпринимали многие ученые (У.Одлинг и Дж.А.Р.Ньюлендс, Ж.Б.А.Дюма и А.Э.Шанкуртуа, И.В.Деберейнер и Л.Ю.Мейер), но лишь Д.И.Менделееву удалось увидеть определенную закономерность, расположив элементы в порядке возрастания их атомных масс. Эта закономерность имеет периодический характер, поэтому Менделеев сформулировал открытый им закон следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомной массы элемента.

В системе химических элементов, предложенной Менделеевым, был ряд противоречий, которые сам автор периодического закона устранить не смог (аргон–калий, теллур–йод, кобальт–никель). Лишь в начале XX в., после открытия строения атома, был объяснен физический смысл периодического закона и появилась его современная формулировка: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Такую формулировку подтверждает и наличие изотопов, химические свойства которых одинаковы, хотя атомные массы различны.

Периодический закон – один из основных законов природы и важнейший закон химии. С открытия этого закона начинается современный этап развития химической науки. Хотя физический смысл периодического закона стал понятен только после создания теории строения атома, сама эта теория развивалась на основе периодического закона и системы химических элементов. Закон помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Сам Менделеев предсказал существование 12 элементов, которые в то время еще не были открыты, и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал, и при жизни ученого эти элементы были открыты («экабор» – галлий, «экаалюминий» – скандий, «экасилиций» – германий). Кроме того, периодический закон имеет большое философское значение, подтверждая наиболее общие законы развития природы.

Графическим отражением периодического закона является периодическая система химических элементов Менделеева. Существует несколько форм периодической системы (короткая, длинная, лестничная (предложена Н.Бором), спиралеобразная). В России наибольшее распространение получила короткая форма. Современная периодическая система содержит 110 открытых на сегодняшний день химических элементов, каждый из которых занимает определенное место, имеет свой порядковый номер и название. В таблице выделяют горизонтальные ряды – периоды (1–3 – малые, состоят из одного ряда; 4–6 – большие, состоят из двух рядов; 7-й период – незавершенный). Кроме периодов выделяют вертикальные ряды – группы, каждая из которых подразделяется на две подгруппы (главную – а и побочную – б). Побочные подгруппы содержат элементы только больших периодов, все они проявляют металлические свойства. Элементы одной подгруппы имеют одинаковое строение внешних электронных оболочек, что обусловливает их схожие химические свойства.

Период – это последовательность элементов (от щелочного металла до инертного газа), атомы которых имеют одинаковое число энергетических уровней, равное номеру периода.

Главная подгруппа – это вертикальный ряд элементов, атомы которых имеют одинаковое число электронов на внешнем энергетическом уровне. Это число равно номеру группы (кроме водорода и гелия).

Все элементы в периодической системе разделяются на 4 электронных семейства (s -, p -, d -, f -элементы) в зависимости от того, какой подуровень в атоме элемента заполняется последним.

Побочная подгруппа – это вертикальный ряд d -элементов, имеющих одинаковое суммарное число электронов на d -подуровне предвнешнего слоя и s -подуровне внешнего слоя. Это число обычно равно номеру группы.

Важнейшими свойствами химических элементов являются металличность и неметалличность.

Металличность – это способность атомов химического элемента отдавать электроны. Количественной характеристикой металличности является энергия ионизации.

Энергия ионизации атома – это количество энергии, которое необходимо для отрыва электрона от атома элемента, т. е. для превращения атома в катион. Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.

Неметалличность – это способность атомов химического элемента присоединять электроны. Количественной характеристикой неметалличности является сродство к электрону.

Сродство к электрону – это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в анион. Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.

Универсальной характеристикой металличности и неметалличности является электроотрицательность (ЭО) элемента.

ЭО элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.

Чем больше металличность, тем меньше ЭО.

Чем больше неметалличность, тем больше ЭО.

При определении значений относительной ЭО по шкале Полинга за единицу принята ЭО атома лития (ЭО(Li) = 1); самым электроотрицательным элементом является фтор (ЭО(F) = 4).

В малых периодах от щелочного металла к инертному газу:

Заряд ядер атомов увеличивается;

Число энергетических уровней не изменяется;

Число электронов на внешнем уровне увеличивается от 1 до 8;

Радиус атомов уменьшается;

Прочность связи электронов внешнего слоя с ядром увеличивается;

Энергия ионизации увеличивается;

Сродство к электрону увеличивается;

ЭО увеличивается;

Металличность элементов уменьшается;

Неметалличность элементов увеличивается.

Все d -элементы данного периода похожи по своим свойствам – все они являются металлами, имеют мало различающиеся радиусы атомов и значения ЭО, поскольку содержат одинаковое число электронов на внешнем уровне (например, в 4-м периоде – кроме Cr и Cu).

В главных подгруппах сверху вниз:

Число энергетических уровней в атоме увеличивается;

Число электронов на внешнем уровне одинаково;

Радиус атомов увеличивается;

Прочность связи электронов внешнего уровня с ядром уменьшается;

Энергия ионизации уменьшается;

Сродство к электрону уменьшается;

ЭО уменьшается;

Металличность элементов увеличивается;

Неметалличность элементов уменьшается.

В результате изучения данной темы вы узнаете:

  • почему водород помещают одновременно в первой и в седьмой группах периодической системы;
  • почему у некоторых элементов (например, Cr и Cu) происходит «провал» внешнего s – электрона на предвнешнюю d – оболочку;
  • что является основным различием в свойствах элементов главных и побочных подгрупп;
  • какие электроны являются валентными для элементов главных и побочных подгрупп;
  • чем обусловлено неравномерное увеличение энергии ионизации при переходе от Li к Ne;
  • какое основание является более сильным: LiOH или KOH; какая кислота сильнее: HCl или HI.

В результате изучения данной темы вы научитесь:

  • записывать электронные конфигурации элементов;
  • устанавливать электронную структуру атома элемента по его положению в соответствующем периоде и подгруппе периодической системы, а значит, и его свойства;
  • из рассмотрения электронной структуры невозбужденных атомов определять число электронов, которые могут участвовать в образовании химических связей, а также возможные степени окисления элементов;
  • сравнивать относительную силу кислот и оснований.

Учебные вопросы:


4.1. Периодический закон Д.И. Менделеева

Периодический закон – величайшее достижение химической науки, основа всей современной химии. С его открытием химия перестала быть описательной наукой, в ней стало возможным научное предвидение.

Периодический закон открыт Д. И. Менделеевым в 1869 г. Ученый сформулировал этот закон так: «Свойства простых тел, также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Более детальное изучение строения вещества показало, что периодичность свойств элементов обусловлена не атомной массой, а электронным строением атомов.

Заряд ядра является характеристикой, определяющей электронное строение атомов, а следовательно, и свойства элементов. Поэтому в современной формулировке Периодический закон звучит так: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от порядкового номера (от величины заряда ядра их атомов).

Выражением Периодического закона является периодическая система элементов.

4.2. Периодическая система Д. И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные - большими.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородным газом (Ne, Ar, Kr, Xe, Rn), которому предшествует типичный неметалл. В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства, поскольку с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне.

В первом периоде, кроме гелия, имеется только один элемент - водород. Его условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Сходство водорода со щелочными металлами проявляется в том, что водород, как и щелочные металлы является восстановителем и, отдавая один электрон, образует однозарядный катион. Больше общего у водорода с галогенами: водород, как и галогены неметалл, его молекула двухатомна, он может проявлять окислительные свойства, образуя с активными металлами солеподобные гидриды, например, NaH, CaH 2 .

В четвертом периоде вслед за Са расположены 10 переходных элементов (декада Sc - Zn), за которыми находятся остальные 6 основных элементов периода (Ga - Кг). Аналогично построен пятый период. Понятие переходный элемент обычно используется для обозначения любого элемента с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположена вставная декада d–элементов (La - Hg), причем после первого переходного элемента La следуют14 f–элементов - лантаноидов (Се - Lu). После Hg располагаются остальные 6 основных р-элементов шестого периода (Тl - Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th - Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

Таким образом, каждый элемент в периодической системе занимает строго определенное положение, которое отмечается порядковым, или атомным, номером.

В периодической системе по вертикали расположены восемь групп (I – VIII), которые в свою очередь делятся на подгруппы - главные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Сходство элементов внутри каждой подгруппы - наиболее заметная и важная закономерность в периодической системе. В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. При этом происходит увеличение устойчивости соединений элементов в низшей для данной подгруппы степени окисления. В побочных подгруппах – наоборот – сверху вниз металлические свойства ослабевают и увеличивается устойчивость соединений с высшей степенью окисления.

4.3. Периодическая система и электронные конфигурации атомов

Поскольку при химических реакциях ядра реагирующих атомов не изменяются, то химические свойства атомов зависят от строения их электронных оболочек.

Заполнение электронных слоев и электронных оболочек атомов происходит в соответствии с принципом Паули и правилом Хунда.

Принцип Паули (запрет Паули)

Два электрона в атоме не могут иметь четыре одинаковых квантовых числа (на каждой атомной орбитали может находиться не более двух электронов).

Принцип Паули определяет максимальное число электронов, обладающих данным главным квантовым числом n (т.е. находящихся на данном электронном слое): N n = 2n 2 . На первом электронном слое (энергетическом уровне) может быть не больше 2 электронов, на втором – 8, на третьем – 18 и т. д.

В атоме водорода, например, имеется один электрон, который находится на первом энергетическом уровне в 1s – состоянии. Спин этого электрона может быть направлен произвольно (m s = +1/2 или m s = –1/2). Следует подчеркнуть еще раз, что первый энергетический уровень состоит из одного подуровня – 1s, второй энергетический уровень – из двух подуровней – 2s и 2р, третий – из трех подуровней – 3s, 3p, 3d и т.д. Подуровень, в свою очередь, содержит орбитали, число которых определяется побочным квантовым числом l и равно (2l + 1). Каждая орбиталь условно обозначается клеткой, находящийся на ней электрон – стрелкой, направление которой указывает на ориентацию спина этого электрона. Значит, состояние электрона в атоме водорода можно представить как 1s 1 или изобразить в виде квантовой ячейки, рис. 4.1:

Рис. 4.1. Условное обозначение электрона в атоме водорода на 1s орбитали

Для обоих электронов атома гелия n = 1, l = 0, m l = 0, m s = +1/2 и –1/2. Следовательно, электронная формула гелия 1s 2 . Электронная оболочка гелия завершена и очень устойчива. Гелий - благородный газ.

Согласно принципу Паули, на одной орбитали не может быть двух электронов с параллельными спинами. Третий электрон в атоме лития занимает 2s-орбиталь. Электронная конфигурация Li: 1s 2 2s 1 , а у бериллия 1s 2 2s 2 . Поскольку 2s-орбиталь заполнена, то пятый электрон у атома бора занимает 2р-орбиталь. При n = 2 побочное (орбитальное) квантовое число l принимает значения 0 и 1. При l = 0 (2s-состояние) m l = 0, а при l = 1 (2p – состояние) m l может быть равным +1; 0; –1. Состоянию 2р соответствуют три энергетические ячейки, рис. 4.2.

Рис. 4.2. Расположение электронов атома бора на орбиталях

Для атома азота (электронная конфигурация 1s 2 2s 2 2p 3 два электрона на первом уровне, пять - на втором) возможны два следующих варианта электронного строения, рис. 4.3:

Рис. 4.3. Возможные варианты расположения электронов атома азота на орбиталях

В первой схеме, рис.4.3а, суммарный спин равен 1/2 (+1/2 –1/2 +1/2), во второй (рис.4.3б) суммарный спин равен 3/2 (+1/2 +1/2 +1/2). Расположение спинов определяется правилом Хунда , которое гласит: заполнение энергетических уровней происходит таким образом, чтобы суммарный спин был максимальным.

Таким образом, из двух приведенных схем строения атома азота устойчивому состоянию (с наименьшей энергией) отвечает первая, где все р-электроны занимают различные орбитали. Орбитали подуровня заполняются так: сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Начиная с натрия, заполняется третий энергетический уровень с n = 3. Распределение электронов атомов элементов третьего периода на орбиталях показано на рис. 4.4.

Рис. 4.4. Распределение электронов на орбиталях для атомов элементов третьего периода в основном состоянии

В атоме каждый электрон занимает свободную орбиталь с наиболее низкой энергией, отвечающей его наибольшей связи с ядром. В 1961 г. В.М. Клечковский сформулировал общее положение, согласно которому энергия электронных орбиталей возрастает в порядке увеличения суммы главного и побочного квантовых чисел (n + l), причем в случае равенства этих сумм, меньшей энергией обладает орбиталь с меньшим значением главного квантового числа n .

Последовательность энергетических уровней в порядке возрастания энергии примерно следующая:

1s < 2s < 2p < 3s < 3р < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p.

Рассмотрим распределение электронов на орбиталях атомов элементов четвертого периода (рис. 4.5).

Рис. 4.5. Распределение электронов по орбиталям атомов элементов четвертого периода в основном состоянии

После калия (электронная конфигурация 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1) и кальция (электронная конфигурация 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2) происходит заполнение электронами внутренней 3d-оболочки (переходные элементы Sc - Zn). Следует отметить существование двух аномалий: у атомов Сr и Сu на 4 s -оболочке находятся не два электрона, а один, т.е. происходит так называемый «провал» внешнего 4s-электрона на предшествующую 3d-оболочку. Электронное строение атома хрома можно представить следующим образом (рис. 4.6).

Рис. 4.6. Распределение электронов по орбиталям для атома хрома

Физическая причина «нарушения» порядка заполнения связана с различной проникающей способностью электронных орбиталей к ядру, особой устойчивостью электронных конфигураций d 5 и d 10 , f 7 и f 14 , отвечающих заполнению электронных орбиталей одним или двумя электронами, а также экранирующим действием внутренних электронных слоев заряда ядра.

Электронные конфигурации атомов Mn, Fe, Co, Ni, Cu и Zn отражены следующими формулами:

25 Mn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 ,

26 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ,

27 Co 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2 ,

28 Ni 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2 ,

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 ,

30 Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 .

После цинка, начиная с 31 элемента - галлия вплоть до 36 элемента - криптона продолжается заполнение четвертого слоя (4р – оболочки). Электронные конфигурации этих элементов имеют следующий вид:

31 Ga 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1 ,

32 Ge 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 ,

33 As 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 ,

34 Se 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 4 ,

35 Br 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 ,

36 Kr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 .

Следует отметить, что если не нарушается запрет Паули, в возбужденных состояниях электроны могут располагаться на других орбиталях атомов.

4.4. Типы химических элементов

Все элементы периодической системы подразделяются на четыре типа:

1. У атомов s–элементов заполняются s–оболочки внешнего слоя (n). К s–элементам относятся водород, гелий и первые два элемента каждого периода.

2. У атомов р–элементов электронами заполняются р–оболочки внешнего уровня (np). К р -элементам относятся последние 6 элементов каждого периода (кроме первого).

3. У d–элементов заполняется электронами d–оболочка второго снаружи уровня (n–1) d . Это элементы вставных декад больших периодов, расположенных между s– и p– элементами.

4. У f–элементов заполняется электронами f–подуровень третьего снаружи уровня (n–2) f . К семейству f–элементов относятся лантаноиды и актиноиды.

Из рассмотрения электронной структуры невозбужденных атомов в зависимости от порядкового номера элемента следует:

    Число энергетических уровней (электронных слоев) атома любого элемента равно номеру периода, в котором находится элемент. Значит, s–элементы находятся во всех периодах, р–элементы – во втором и последующих, d–элементы – в четвертом и последующих и f–элементы – в шестом и седьмом периодах.

    Номер периода совпадает с главным квантовым числом внешних электронов атома.

    s– и p–элементы образуют главные подгруппы, d–элементы – побочные подгруппы, f–элементы образуют семейства лантаноидов и актиноидов. Таким образом, подгруппа включает элементы, атомы которых обычно имеют сходное строение не только внешнего, но и предвнешнего слоя (за исключением элементов, в которых имеет место «провал» электрона).

    Номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних оболочек. Это является основным различием в свойствах элементов главных и побочных подгрупп.

Элементы с валентными d– или f–электронами называются переходными.

Номер группы, как правило, равен высшей положительной степени окисления элементов, проявляемой ими в соединениях. Исключением является фтор – его степень окисления равна –1; из элементов VIII группы только для Os, Ru и Xe известна степень окисления +8.

4.5. Периодичность свойств атомов элементов

Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.

Различают радиусы атомов металлов и ковалентные радиусы атомов неметаллов. Радиусы атомов металлов вычисляются на основе межатомных расстояний, которые хорошо известны для большинства металлов на основе экспериментальных данных. При этом радиус атома металла равен половине расстояния между центрами двух соседних атомов. Аналогичным образом вычисляются ковалентные радиусы неметаллов в молекулах и кристаллах простых веществ. Чем больше атомный радиус, тем легче отрываются от ядра внешние электроны (и наоборот). В отличие от атомных радиусов, радиусы ионов – условные величины.

Слева направо в периодах величина атомных радиусов металлов уменьшается, а атомных радиусов неметаллов изменяется сложным образом, так как она зависит от характера химической связи. Во втором периоде, например, радиусы атомов сначала уменьшаются, а затем возрастают, особенно резко при переходе к атому благородного газа.

В главных подгруппах радиусы атомов увеличиваются сверху вниз, так как возрастает число электронных слоев.

Радиус катиона меньше радиуса соответствующего ему атома, причем с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: O 2– , F – , Na + , Mg 2+ , Al 3+ .

Энергия ионизации – энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она обычно выражается в электронвольтах (1 эВ = 96,485 кДж/моль). В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.

В таблице 4.1 приведены значения энергий ионизации (энергий отрыва первого, второго и т.д. электронов) для некоторых атомов.

Во втором периоде при переходе от Li к Ne энергия отрыва первого электрона возрастает (см. таблицу 4.1). Однако, как видно из таблицы, энергия ионизации возрастает неравномерно: у следующих за бериллием и азотом соответственно бора и кислорода наблюдается ее некоторое уменьшение, что обусловлено особенностями электронного строения атомов.

Внешняя s–оболочка бериллия полностью заполнена, поэтому у следующего за ним бора электрон поступает на р-орбиталь. Этот р-электрон менее прочно связан с ядром, чем s–электрон, поэтому отрыв р–электронов требует меньшей затраты энергии.

Таблица 4.1.

Энергии ионизации I атомов некоторых элементов

На каждой р-орбитали атома азота имеется по одному электрону. У атома кислорода электрон поступает на р-орбиталь, которая уже занята одним электроном. Два электрона, находящиеся на одной и той же орбитали, сильно отталкиваются, поэтому оторвать электрон от атома кислорода легче, чем от атома азота.

Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.

Сродство к электрону – энергия, выделяющаяся при присоединении электрона к нейтральному атому. Сродство к электрону, как и энергию ионизации, обычно выражают в электронвольтах. Наибольшее сродство к электрону – у галогенов, наименьшее – у щелочных металлов. В таблице 4.2 приведены значения сродства к электрону для атомов некоторых элементов.

Таблица 4.2.

Сродство к электрону атомов некоторых элементов

Электроотрицательность – способность атома в молекуле или ионе притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) как количественная мера – приближенная величина. Предложено около 20 шкал электроотрицательностей, наибольшее признание из которых получила шкала, разработанная Л. Полингом. На рис. 4.7 приведены значения ЭО по Полингу.

Рис. 4.7. Электроотрицательность элементов (по Полингу)

Наиболее электроотрицательным из всех элементов по шкале Полинга является фтор. Его ЭО принята равной 4. Наименее электроотрицательный – цезий. Водород занимает промежуточное положение, поскольку при взаимодействии с одними элементами он отдает электрон, а при взаимодействии с другими – приобретает.

4.6. Кислотно-основные свойства соединений; схема Косселя

Для объяснения характера изменения кислотно-основных свойств соединений элементов Коссель (Германия) предложил использовать простую схему, основанную на предположении о том, что в молекулах существует чисто ионная связь и между ионами имеет место кулоновское взаимодействие. Схема Косселя описывает кислотно-основные свойства соединений, содержащих связи Э-Н и Э-О-Н, в зависимости от заряда ядра и радиуса образующего их элемента.

Схема Косселя для двух гидроксидов металлов, например, LiOH и KOH показана на рис. 4.8.

Рис. 4.8. Схема Косселя для LiOH и KOH

Как видно из представленной схемы, радиус иона Li + меньше радиуса иона К + и ОН - –группа связана прочнее с катионом лития, чем с катионом калия. В результате КОН будет легче диссоциировать в растворе и основные свойства гидроксида калия будут выражены сильнее.

Аналогичным образом можно проанализировать схему Косселя для двух оснований CuOH и Cu(OH) 2 . Поскольку радиус иона Cu 2+ меньше, а заряд – больше, чем у иона Cu + , ОН - -группу будет прочнее удерживать ион Cu 2+ . В результате основание Cu(OH) 2 будет более слабым, чем CuOH.

Таким образом, сила оснований возрастает при увеличении радиуса катиона и уменьшении его положительного заряда .

В главных подгруппах сверху вниз сила оснований увеличивается, поскольку в этом направлении возрастают радиусы ионов элементов. В периодах слева направо происходит уменьшение радиусов ионов элементов и увеличение их положительного заряда, поэтому в этом направлении сила оснований уменьшается.

Схема Косселя для двух бескислородных кислот, например, HCl и HI показана на рис. 4.9

Рис. 4.9. Схема Косселя для HCl и HI

Поскольку радиус хлорид-иона меньше, чем иодид-иона, ион Н + прочнее связан с анионом в молекуле хлороводородной кислоты, которая будет слабее, чем иодоводородная кислота. Таким образом, сила бескислородных кислот возрастает с увеличением радиуса отрицательного иона .

Сила кислородсодержащих кислот изменяется противоположным образом. Она увеличивается с уменьшением радиуса иона и увеличением его положительного заряда. На рис. 4.10 представлена схема Косселя для двух кислот HClO и HClO 4 .

Рис. 4.10. Схема Косселя для HClO и HClO 4

Ион С1 7+ прочно связан с ионом кислорода, поэтому протон легче будет отщепляться в молекуле НС1О 4 . В то же время связь иона С1 + с ионом О 2- менее прочная, и в молекуле НС1О протон будет сильнее удерживаться анионом О 2- . В результате HClO 4 будет более сильной кислотой, чем HClO.

Достоинством схемы Косселя является то, что она с использованием простой модели позволяет объяснить характер изменения кислотно-основных свойств соединений в ряду сходных веществ. Вместе с тем эта схема является чисто качественной. Она позволяет лишь сравнивать свойства соединений и не дает возможность определить кислотно-основные свойства произвольно выбранного одного соединения. Недостатком этой модели является то, что в ее основу положены только электростатические представления, в то время как в природе не существует чистой (стопроцентной) ионной связи.

4.7. Окислительно-восстановительные свойства элементов и их соединений

Изменение окислительно-восстановительных свойств простых веществ легко установить, рассматривая характер изменения электроотрицательности соответствующих элементов. В главных подгруппах сверху вниз электроотрицательность уменьшается, что приводит к уменьшению окислительных и увеличению в этом направлении восстановительных свойств. В периодах слева направо электроотрицательность возрастает. В результате в этом направлении восстановительные свойства простых веществ уменьшаются, а окислительные – возрастают. Таким образом, сильные восстановители располагаются в левом нижнем углу периодической системы элементов (калий, рубидий, цезий, барий), в то время как сильные окислители находятся в правом верхнем ее углу (кислород, фтор, хлор).

Окислительно-восстановительные свойства соединений элементов зависят от их природы, величины степени окисления элементов, положения элементов в периодической системе и ряда других факторов.

В главных подгруппах сверху вниз окислительные свойства кислородсодержащих кислот, в которых атомы центрального элемента имеют одинаковую степень окисления, уменьшаются. Сильными окислителями являются азотная и концентрированная серная кислоты. Окислительные свойства проявляются тем сильнее, чем больше положительная степень окисления элемента в соединении. Сильные окислительные свойства проявляют перманганат калия и дихромат калия.

В главных подгруппах восстановительные свойства простых анионов увеличиваются сверху вниз. Сильными восстановителями являются HI, H 2 S, иодиды и сульфиды.

Все элементы обычно представляется в химии в виде периодической системы: располагаются строках (периоды и ряды) и столбцах (соответствуют группам) таблицы с учетом возрастания их атомных масс. Открытие периодического закона относится к 1869 году и бесспорно принадлежит русскому ученому химику — Дмитрию Ивановичу Менделееву. Хотя многие зарубежные источники рядом с его именем упоминают имя Юлиуас Лотар Мейера, который, по их утверждению, годом позже (но независимо) разработал подобную систему. Ключом к успеху многолетних усилий было осознание того, что предыдущие попытки других ученых потерпели неудачу, так как многие из химических элементов еще не были открыты, поэтому в своей таблице он оставил для них свободные места.

Периодический закон, отображающийся как таблица Менделеева, по горизонтали делится на семь периодов. Обозначения первого, второго и третьего периодов совпадают с такими же римскими цифрами рядов: I, II, III. Периоды четвертый, пятый и шестой делятся на четные и нечетные ряды, идентифицируются римскими цифрами: IV, V, VI, VII, VIII и IX. А седьмой период совпадает с X рядом. По вертикали в восемнадцати столбцах или колонках все элементы распределены по восьми группам. Каждая группа, с первой по седьмую, делится на две колонки, представляющие собой главную и побочную подгруппы. Восьмая группа состоит из четырех подгрупп. Кроме того, две ячейки с третьей группы — лантаном и актинием — скрывают ряды, называемые соответственно лантаноиды (с 58 по 71 номер) и актиноиды (с 90 по 103 номер).

В первом периоде всего два представителя: водород и гелий. Второй и третий включают по восемь химических элементов. Периоды четвертый, пятый и шестой являются длительными, так как в каждый входит по восемнадцать видимых элементов, они распределяются таким образом: в четных рядах содержится десять, а в нечетных всего восемь. Но если учитывать лантаноиды, то шестой период содержит тридцать два химических элемента, включая четырнадцать скрытых. Седьмой период также является длительным, он имеет восемнадцать, четыре из них видимые, а четырнадцать (актиноиды) являются скрытыми. Элементы нечетных рядов четвертого, пятого и шестого периодов относятся к побочным подгруппам (b), а четных рядов входят в главные подгруппы (a), наряду с теми, которые относятся к первому, второму, третьему и седьмому периодам.

Периодический закон устанавливает, что все элементы в пределах одной группы отличаются значительными сходствами друг с другом и заметно отличаются от тех, что входят в состав других групп. Например, в группу Ia, за исключением водорода, входят металлы с химической валентностью плюс 1, в то время как в группе VIIa, за исключением астата, все элементы являются неметаллами, которые в соединениях обычно имеют валентность минус 1. Сегодня периодический закон представляется не только таблицей. Математического выражения он не имеет, но существует в виде утверждения, что свойства любого химического элемента, а также свойства всех и сложных соединений, в состав которых он входит, имеют периодическую зависимость от величины заряда

Термин периодичность был предложен впервые Д. И. Менделеевым, несмотря на то, что и ранее были попытки ученых из разных стран каким-то образом классифицировать известные Но именно он заметил, что при расположении их в порядке увеличения атомных масс, свойство каждого восьмого элемента напоминают свойства первого. В 1869 году первый вариант таблицы (на тот момент было известно только 60 элементов) еще сильно отличался от современного вида, наглядно отображающего периодический закон. Со временем он претерпел определенные изменения, которые заключались в дополнении новыми, позже открытыми химическими элементами. Но это не только не разрушило представления о периодичности свойств химических атомов, которыми руководствовался но, каждое из них подтверждало закон, сформулированный нашим ученым.

Открытый русским ученым периодический закон и созданная на его основе стали надежным фундаментом современной химии. Благодаря чему Менделеев исправил у некоторых атомов их массы и предсказал существование в природе трех еще не открытых элементов, что позже нашло экспериментальное подтверждение, и были открыты галлий, скандий и германий. Все это привело к всеобщему признанию периодической системы. Значение периодического закона переоценить невозможно, так как это открытие имело огромное значение в развитии химии.