Молекулярной кристаллической решеткой обладает вещество. Ионная кристаллическая решетка

При осуществлении многих физических и химических реакций вещество переходит в твердое агрегатное состояние. При этом молекулы и атомы стремятся расположиться в таком пространственном порядке, при котором силы взаимодействия между частицами вещества были бы максимально сбалансированы. Этим и достигается прочность твердого вещества. Атомы, однажды заняв определенное положение, совершают небольшие колебательные движения, амплитуда которых зависит от температуры, но положение их в пространстве остается фиксированным. Силы притяжения и отталкивания уравновешивают друг друга на определенном расстоянии.

Современные представления о строении вещества

Современная наука утверждает, что атом состоит из заряженного ядра, несущего положительный заряд, и электронов, несущих заряды отрицательные. Со скоростью несколько тысяч триллионов оборотов в секунду электроны вращаются по своим орбитам, создавая вокруг ядра электронное облако. Положительный заряд ядра численно равен отрицательному заряду электронов. Таким образом, атом вещества остается электрически нейтральным. Возможные взаимодействия с другими атомами происходят тогда, когда электроны отсоединяются от родного атома, тем самым нарушая электрический баланс. В одном случае атомы выстраиваются в определенном порядке, который и называется кристаллической решеткой. В другом - за счет сложного взаимодействия ядер и электронов соединяются в молекулы различного вида и сложности.

Определение кристаллической решетки

В совокупности различные типы кристаллических решеток веществ представляют собой сетки с различной пространственной ориентацией, в узлах которых располагаются ионы, молекулы или атомы. Это стабильное геометрическое пространственное положение и называется кристаллической решеткой вещества. Расстояние между узлами одной кристаллической ячейки называется периодом идентичности. Пространственные углы, под которыми расположены узлы ячейки, называются параметрами. По способу построения связей кристаллические решетки могу быть простыми, базоцентрированными, гранецентрированными и объемно-центрированными. Если частицы вещества расположены лишь в углах параллелепипеда, такая решетка называется простой. Пример такой решетки показан ниже:

Если, кроме узлов, частицы вещества расположены и в середине пространственных диагоналей, то такое построение частиц в веществе имеет название объемно-центрированной кристаллической решетки. На рисунке этот тип показан наглядно.

Если кроме узлов в вершинах решетки имеется узел и в месте, где пересекаются воображаемые диагонали параллелепипеда, то перед вами - гранецентрированный тип решетки.

Виды кристаллических решеток

Различные микрочастицы, из которых состоит вещество, определяют различные типы кристаллических решеток. Они могут определять принцип построения связи между микрочастицами внутри кристалла. Физические типы кристаллических решеток - ионные, атомные и молекулярные. Сюда же относятся различные типы кристаллических решеток металлов. Изучением принципов внутреннего строения элементов занимается химия. Типы кристаллических решеток подробнее представлены ниже.

Ионные кристаллические решетки

Данные типы кристаллических решеток присутствуют в соединениях с ионным типом связи. В этом случае узлы решетки содержат ионы, обладающие противоположным электрическим зарядом. Благодаря электромагнитному полю, силы межионного взаимодействия оказываются достаточно сильными, и это обуславливает физические свойства вещества. Обычными характеристиками являются тугоплавкость, плотность, твердость и возможность проводить электрический ток. Ионные типы кристаллических решеток имеются у таких веществ, как поваренная соль, нитрат калия и прочие.

Атомные кристаллические решетки

Этот тип строения вещества присущ элементам, структуру которых определяет ковалентная химическая связь. Типы кристаллических решеток подобного рода содержат в узлах отдельные атомы, связанные между собой крепкими ковалентными связями. Подобный тип связи возникает тогда, когда два одинаковых атома «делятся» электронами, тем самым образуют общую пару электронов для соседних атомов. Благодаря такому взаимодействию ковалентные связи равномерно и сильно связывают атомы в определенном порядке. Химические элементы, которые содержат атомные типы кристаллических решеток, обладают твердостью, высокой температурой плавления, плохо проводят электрический ток и химически неактивны. Классическими примерами элементов с подобным внутренним строением можно назвать алмаз, кремний, германий, бор.

Молекулярные кристаллические решетки

Вещества, имеющие молекулярный тип кристаллической решетки, представляют собой систему устойчивых, взаимодействующих, плотноупакованных между собой молекул, которые расположены в узлах кристаллической решетки. В подобных соединениях молекулы сохраняют свое пространственное положение в газообразной, жидкой и твердой фазе. В узлах кристалла молекулы удерживаются слабыми ван-дер-ваальсовыми силами, которые в десятки раз слабее сил ионного взаимодействия.

Образующие кристалл молекулы могут быть как полярными, так и неполярными. Из-за спонтанного движения электронов и колебания ядер в молекулах электрическое равновесие может смещаться - так возникает мгновенный электрический момент диполя. Соответствующим образом ориентированные диполи создают силы притяжения в решетке. Двуокись углерода и парафин являются типичными примерами элементов с молекуляной кристаллической решеткой.

Металлические кристаллические решетки

Металлическая связь гибче и пластичней ионной, хотя может показаться, что обе они базируются на одном и том же принципе. Типы кристаллических решеток металлов объясняют их типичные свойства - такие, например, как механическая прочность, тепло- и электропроводность, плавкость.

Отличительной особенностью металлической кристаллической решетки является наличие положительно заряженных ионов металла (катионов) в узлах этой решетки. Между узлами находятся электроны, которые непосредственно участвуют в создании электрического поля вокруг решетки. Количество электронов, перемещающихся внутри этой кристаллической решетки, называется электронным газом.

При отсутствии электрического поля свободные электроны совершают хаотическое движение, беспорядочно взаимодействуя с ионами решетки. Каждое такое взаимодействие меняет импульс и направление движения отрицательно заряженной частицы. Своим электрическим полем электроны притягивают к себе катионы, уравновешивая их взаимное отталкивание. Хотя электроны считаются свободными, их энергии не хватает для того, чтобы покинуть кристаллическую решетку, поэтому эти заряженные частицы постоянно находятся в ее пределах.

Присутствие электрического поля придает электронному газу дополнительную энергию. Соединение с ионами в кристаллической решетке металлов не является прочным, поэтому электроны легко покидают ее пределы. Электроны двигаются по силовым линиям, оставляя позади положительно заряженные ионы.

Выводы

Огромное значение изучению внутреннего строения вещества уделяет химия. Типы кристаллических решеток различных элементов определяют практически весь спектр их свойств. Воздействуя на кристаллы и меняя их внутренне строение, можно добиться усиления нужных свойств вещества и удалить нежелательные, преобразовывать химические элементы. Таким образом, изучение внутренней структуры окружающего мира может помочь познать суть и принципы устройства мироздания.

Твердые кристаллы можно представить как трехмерные конструкции, в которых четко повторяется один и тот же структуры во всех направлениях. Геометрически правильная форма кристаллов обусловлена ​​их строго закономерным внутренним строением. Если центры притяжения , ионов или молекул в кристалле изобразить в виде точек, то получим трехмерное регулярное распределение таких точек, которое называется кристаллической решеткой, а сами точки — узлы кристаллической решетки. Определенная внешняя форма кристаллов является следствием их внутренней структуры, которая связана именно с кристаллической решеткой.

Кристаллическая решетка — это воображаемый геометрический образ для анализа строения кристаллов, который представляет собой объемно-пространственную сетчатую структуру, в узлах которой располагаются атомы, ионы или молекулы вещества.

Для характеристики кристаллической решетки используют следующие параметры:

  1. кристаллической решетки Е кр [КДж / моль] — это энергия, выделяющаяся при образовании 1 моля кристалла из микрочастиц (атомов, молекул, ионов), которые находятся в газообразном состоянии и удалены друг от друга на такое расстояние, что исключается возможность их взаимодействия.
  2. Константа кристаллической решетки d — наименьшее расстояние между центрами двух частиц в соседних узлах кристаллической решетки, соединенных .
  3. Координационное число — количество ближайших частиц, окружающих в пространстве центральную частицу и сочетаются с ней химической связью.

Основой кристаллической решетки является элементарная ячейка, которая повторяется в кристалле бесконечное количество раз.

Элементарная ячейка — это наименьшая структурная единица кристаллической решетки, которая обнаруживает все свойства ее симметрии.

Упрощенно элементарную ячейку можно определить как малую часть кристаллической решетки, которая еще выявляет характерные особенности ее кристаллов. Признаки элементарной ячейки описываются с помощью трех правил Бреве:

  • симметрия элементарной ячейки должна соответствовать симметрии кристаллической решетки;
  • элементарная ячейка должна иметь максимальное количество одинаковых ребер а, b , с и одинаковых углов между ними a , b , g . ;
  • при условии соблюдения первых двух правил элементарная ячейка должна занимать минимальный объем.

Для описания формы кристаллов используют систему трех кристаллографических осей а, b, с, которые отличаются от обычных координатных осей тем, что они являются отрезками определенной длины, углы между которыми a, b, g могут быть как прямыми, так и непрямыми.

Модель кристаллической структуры: а) кристаллическая решетка с выделенной элементарной ячейкой; б) элементарная ячейка с обозначениями гранных углов

Форму кристалла изучает наука геометрическая кристаллография, одним из основных положений которой является закон постоянства гранных углов: для всех кристаллов данного вещества углы между соответствующими гранями всегда остаются одинаковыми.

Если взять большое количество элементарных ячеек и заполнить ими плотно друг к другу определенный объем, сохраняя параллельность граней и ребер, то образуется монокристалл идеальной строения. Но на практике чаще всего встречаются поликристаллов, в которых регулярные структуры существуют в определенных пределах, по которым ориентация регулярности резко меняется.

В зависимости от соотношения длин ребер а, b, с и углов a, b, g между гранями элементарной ячейки различают семь систем — так называемых сингоний кристаллов. Однако элементарная ячейка может быть построенной и таким образом, что она имеет дополнительные узлы, которые размещаются внутри ее объема или на всех ее гранях — такие решетки называются соответственно объемноцентрированными и гранецентрированными. Если дополнительные узлы находятся только на двух противоположных гранях (верхний и нижний), то это базоцентрированная решетка. С учетом возможности дополнительных узлов существует всего 14 типов кристаллических решеток.

Внешняя форма и особенности внутреннего строения кристаллов определяются принципом плотной «упаковки»: наиболее устойчивой, а потому и наиболее вероятной структурой будет такая, которая соответствует наиболее плотному расположению частиц в кристалле и в которой остается наименьшее по объему свободное пространство.

Типы кристаллических решеток

В зависимости от природы частиц, содержащихся в узлах кристаллической решетки, а также от природы химических связей между ними, различаются четыре основных типа кристаллических решеток.

Ионные решетки

Ионные решетки построены из разноименных ионов, расположенных в узлах решетки и связанные силами электростатического притяжения. Поэтому структура ионной кристаллической решетки должна обеспечить ее электронейтральность. Ионы могут быть простыми (Na + , Cl —) или сложными (NH 4 + , NO 3 —). Вследствие ненасыщенности и ненаправленности ионной связи ионные кристаллы характеризуются большими координационными числами. Так, в кристаллах NaCl координационные числа ионов Na + и Cl — равна 6, а ионов Cs + и Cl — в кристалле CsCl — 8, поскольку один ион Cs + окружен восемью ионами Cl — , а каждый ион — Cl — соответственно восемью ионами Cs + . Ионные кристаллические решетки образуются большим количеством солей, оксидов и оснований.


Примеры ионных кристаллических решеток: а) NaCl; б) CsCl

Вещества с ионными кристаллическими решетками имеют сравнительно высокую твердость, они достаточно тугоплавкие, нелетучие. В отличие от ионные соединения очень хрупкие, поэтому даже небольшой сдвиг в кристаллической решетке приближает друг к другу одноименно заряженные ионы, отталкивания между которыми приводит к разрыву ионных связей и как следствие — к появлению в кристалле трещин или к его разрушению. В твердом состоянии вещества с ионной кристаллической решеткой относятся к диэлектрикам и не проводят электрический ток. Однако при расплавлении или растворении в полярных растворителях нарушается геометрически правильная ориентировка ионов относительно друг друга, сначала ослабляются, а затем разрушаются химические связи, поэтому меняются и свойства. Как следствие, электрический ток начинают проводить как расплавы ионных кристаллов, так и их растворы.

Атомные решетки

Эти решетки построены из атомов, соединенных между собой . Они, в свою очередь, делятся на три типа: каркасные, слоистые и цепочечные структуры.

Каркасную структуру имеет, например, алмаз — одно из самых твердых веществ. Благодаря sp 3 -гибридизации атома углерода строится трехмерная решетка, которая состоит исключительно из атомов углерода, соединенных ковалентными неполярными связями, оси которых размещаются под одинаковыми валентными углами (109,5 o).


Каркасная структура атомной кристаллической решетки алмаза

Слоистые структуры можно рассматривать как огромные двумерные молекулы. Для слоистых структур присущи ковалентные связи внутри каждого слоя и слабое вандерваальсовское взаимодействие между соседними слоями.


Слоистые структуры атомных кристаллических решеток: а) CuCl 2 ; б) PbO. На моделях с помощью очертаний параллелепипедов выделены элементарные ячейки

Классическим примером вещества со слоистой структурой является графит, в котором каждый атом углерода находится в состоянии sp 2 -гибридизации и образует в одной плоскости три ковалентные s-связи с тремя другими атомами С. Четвертые валентные электроны каждого атома углерода являются негибридизированными, за их счет образуются очень слабые вандерваальсовские связи между слоями. Поэтому при приложении даже небольшого усилия, отдельные слои легко начинают скользить друг вдоль друга. Этим объясняется, например, свойство графита писать. В отличие от алмаза графит хорошо проводит электричество: под воздействием электрического поля нелокализованные электроны могут перемещаться вдоль плоскости слоев, и, наоборот, в перпендикулярном направлении графит почти не проводит электрического тока.


Слоистая структура атомной кристаллической решетки графита

Цепочечные структуры характерны, например, для оксида серы (SO 3) n , киновари HgS, хлорида бериллия BeCl 2 , а также для многих аморфных полимеров и для некоторых силикатных материалов, таких, как асбест.


Цепная структура атомной кристаллической решетки HgS: а) проекция сбоку б) фронтальная проекция

Веществ с атомной строением кристаллических решеток сравнительно немного. Это, как правило, простые вещества, образованные элементами IIIА- и IVA-подгрупп (Si, Ge, B, C). Нередко соединения двух разных неметаллов имеют атомные решетки, например, некоторые полиморфные модификации кварца (оксид кремния SiO 2) и карборунда (карбид кремния SiC).

Все атомные кристаллы отличаются высокой прочностью, твердостью, тугоплавкостью и нерастворимостью практически ни в одном растворителе. Такие свойства обусловлены прочностью ковалентной связи. Вещества с атомной кристаллической решеткой имеют широкий диапазон электрической проводимости от изоляторов и полупроводников до электронных проводников.


Атомные кристаллические решетки некоторых полиморфных модификации карборунда — карбида кремния SiC

Металлические решетки

Эти кристаллические решетки содержат в узлах атомы и ионы металлов, между которыми свободно движутся общие для них всех электроны (электронный газ), которые образуют металлическую связь. Особенность кристаллических решеток металлов заключается в больших координационных числах (8-12), которые свидетельствуют о значительной плотность упаковки атомов металлов. Это объясняется тем, что «остовы» атомов, лишены внешних электронов, размещаются в пространстве как шарики одинакового радиуса. Для металлов чаще всего встречаются три типа кристаллических решеток: кубическая гранецентрированная с координационным числом 12 кубическая объемноцентрированная с координационным числом 8 и гексагональная, плотной упаковки с координационным числом 12.

Особые характеристики металлического связи и металлических решеток обусловливают такие важнейшие свойства металлов, как высокие температуры плавления, электро- и теплопроводность, ковкость, пластичность, твердость.


Металлические кристаллические решетки: а) кубическая объемноцентрированная (Fe, V, Nb, Cr) б) кубическая гранецентрированная (Al, Ni, Ag, Cu, Au) в) гексагональная (Ti, Zn, Mg, Cd)

Молекулярные решетки

Молекулярные кристаллические решетки содержат в узлах молекулы, соединенные между собой слабыми межмолекулярными силами — вандерваальсовскими или водородными связями. Например, лед состоит из молекул воды, удерживающихся в кристаллической решетке водородными связями. К тому же типу относятся кристаллические решетки многих веществ, переведенных в твердое состояние, например: простые вещества Н 2 , О 2 , N 2 , O 3 , P 4 , S 8 , галогены (F 2 , Cl 2 , Br 2 , I 2), «сухой лед» СО 2 , все благородные газы и большинство органических соединений.


Молекулярные кристаллические решетки: а) йод I2 ; б) лед Н2О

Поскольку силы межмолекулярного взаимодействия слабее, чем силы ковалентной или металлической связи, молекулярные кристаллы имеют небольшую твердость; они легкоплавкие и летучие, нерастворимые в и не проявляют электропроводности.

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное.

Чтобы рассматривать данную тему необходимо знать:

Электроотрицательность - это способность атома смещать к себе общую электронную пару. (Самый электроотрицательный элемент - фтор.)

Кристаллическая решетка - трехмерное упорядоченное расположение частиц.

Различают три основных типа химических связей: ковалентную, ионную и металлическую.

Металлическая связь характерна для металлов, которые содержат небольшое количество электронов на внешнем энергетическом уровне (1 или 2, реже 3). Эти электроны легко теряют связь с ядром и свободно перемещаются по всему куску металла, образуя "электронное облако" и обеспечивая связь с положительно заряженными ионами, образовавшимися после отрыва электронов. Кристаллическая решетка - металлическая. Это обуславливает физические свойства металлов: высокую тепло- и электропроводность, ковкость и пластичность, металлический блеск.

Ковалентная связь образуется за счет общей электронной пары атомов неметаллов, при этом каждый из них достигает устойчивой конфигурации атома инертного элемента.

Если связь образуют атомы с одинаковой электроотрицательностью, то есть разница электроотрицательности двух атомов равна нулю, электронная пара располагается симметрично между двумя атомами и связь называется ковалентной неполярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов лежит в интервале от нуля примерно до двух (чаще всего это разные неметаллы), то общая электронная пара смещается к более электроотрицательному элементу. На нем возникает частично отрицательный заряд (отрицательный полюс молекулы), а на другом атоме - частично положительный заряд (положительный полюс молекулы). Такая связь называется ковалентной полярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов больше двух (чаще всего это неметалл и металл), то считают, что электрон полностью переходит к атому неметалла. В результате этот атом становится отрицательно заряженным ионом. Атом, отдавший электрон, - положительно заряженным ионом. Связь между ионами называется ионной связью.

Соединения с ковалентной связью имеют два типа кристаллических решеток: атомные и молекулярные.

В атомной кристаллической решетке в узлах находятся атомы, соединенные прочной ковалентной связью. Вещества с такой кристаллической решеткой имеют высокие температуры плавления, прочны и тверды, практически нерастворимы в жидкостях. например, алмаз, твердый бор, кремний, германий и соединения некоторых элементов с углеродом и кремнием.

В молекулярной кристаллической решетке в узлах находятся молекулы, соединенные слабым межмолекулярным взаимодействием. Вещества с такой решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, из растворы практически не проводят электрический ток. Например, лед, твердый оксид углерода (IV) твердые галогеноводороды, твердые простые вещества, образованные одно-(благородные газы), двух- (F 2 , Cl 2 , Br 2 , I 2 , H 2 , O 2 , N 2), трех-(О 3), четырех- (Р 4), восьми- (S 8) атомными молекулами. Большинство кристаллических органических соединений имеют молекулярную решетку.

Соединения с ионной связью имеют ионную кристаллическую решетку, в узлах которой чередуются положительно и отрицательно заряженные ионы. Вещества с ионной решеткой тугоплавки и малолетучи, имеют сравнительно высокую твердость, но хрупки. Расплавы и водные растворы солей и щелочей проводят электрический ток.

Примеры заданий

1. В какой молекуле ковалентная связь "элемент - кислород" наиболее полярна?

1) SO 2 2) NO 3) Cl 2 O 4) H 2 O

Решение:

Полярность связи определяется разностью электроотрицательности двух атомов (в данном случае элемента и кислорода). Сера, азот и хлор находятся рядом с кислородом, следовательно их электроотрицательности отличаются незначительно. И только водород находится на отдалении от кислорода, значит разница в электроотрицательности будет большая, и связь будет наиболее полярна.

Ответ: 4)

2. Водородные связи образуются между молекулами

1) метанола 2) метаналь 3) ацетилена 4) метилформиата

Решение:

В составе ацетилена вообще нет сильноэлектроотрицательных элементов. Метаналь Н 2 СО и метилформиат НСООСН 3 не содержат водорода, соединенного с сильноэлектроотрицательным элементом. Водород в них соединен с углеродом. А вот в метаноле СН 3 ОН между атомом водорода одной гидроксогруппы и атомом кислорода другой молекулы возможно образование водородной связи.

Ответ: 1)

Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. При мысленном соединении этих точек пересекающимися прямыми линиями образуется пространственный каркас, который называюткристаллической решеткой . Точки, в которых размещены частицы, называются узлами кристаллической решетки . В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. Они совершают колебательные движения. С повышением температуры амплитуда колебаний возрастает, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают 4 вида кристаллических решеток: ионные (NaCl, KCl), атомные, молекулярные и металлические.

Кристаллические решетки, состоящие из ионов, называются ионными . Их образуют вещества с ионной связью. Примером может служить кристалл хлорида натрия, в котором каждый ион натрия окружен 6 хлорид-ионами, а каждый хлорид-ион 6 ионами-натрия.

Кристаллическая решетка NaCl

Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или отдельной молекуле называется координационным число .

В решетке NaCl координационные числа обоих ионов равны 6. И так, в кристалле NaCl нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl - , Na n Cl n – где n большое число. Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи.

Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и уменьшению прочности связи между ними. Поэтому расплавы их проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например, воде.

Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными . Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с 4 соседними атомами. Координационное число углерода в алмазе равно 4. Вещества с атомной кристаллической решеткой имеют высокую температуру плавления (у алмаза свыше 3500 о С), прочны и тверды, практически не растворимы в воде.

Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными . Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкую температуру плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Примерами их являются лед, твердый СО 2 («сухой лед»), галогены, кристаллы водорода, кислорода, азота, благородных газов и др.

Валентность

Важной количественной характеристикой, показывающей число взаимодействующих между собой атомов в образовавшейся молекуле, является валентность – свойство атомов одного элемента присоединять определенное число атомов других элементов.

Количественно валентность определяется числом атомов водорода, которое данный элемент может присоединять или замещать. Так, например, в плавиковой кислоте (HF) фтор одновалентен, в аммиаке (NH 3) азот трехвалентен, в кремневодороде (SiH 4 – силан) кремний четырехвалентен и т.д.

Позже, с развитием представлений о строении атомов, валентность элементов стали связывать с числом неспаренных электронов (валентных), благодаря которым осуществляется связь между атомами. Таким образом, валентностьопределяется числом неспаренных электронов в атоме, принимающих участие в образовании химической связи (в основном или возбужденном состоянии). В общем случае валентность равна числу электронных пар, связывающих данный атом с атомами других элементов.

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная свойственна и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому , металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе - ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз - на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело - алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки - величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c - длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения - десятой доли нанометра или ангстремах .

2. К - координационное число . Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки . Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.