Числовая окружность на тригонометрический круг. Числовая окружность

Координаты x лежащих на окружности точек равны cos(θ), а координаты y соответствуют sin(θ), где θ - величина угла.

  • Если вам сложно запомнить данное правило, просто помните, что в паре (cos; sin) "синус стоит на последнем месте".
  • Это правило можно вывести, если рассмотреть прямоугольные треугольники и определение данных тригонометрических функций (синус угла равен отношению длины противолежащего, а косинус - прилежащего катета к гипотенузе).
  • Запишите координаты четырех точек на окружности. "Единичная окружность" - это такая окружность, радиус которой равен единице. Используйте это, чтобы определить координаты x и y в четырех точках пересечения координатных осей с окружностью. Выше мы обозначили эти точки для наглядности "востоком", "севером", "западом" и "югом", хотя они не имеют устоявшихся названий.

    • "Восток" соответствует точке с координатами (1; 0) .
    • "Север" соответствует точке с координатами (0; 1) .
    • "Запад" соответствует точке с координатами (-1; 0) .
    • "Юг" соответствует точке с координатами (0; -1) .
    • Это аналогично обычному графику, поэтому нет необходимости запоминать эти значения, достаточно помнить основной принцип.
  • Запомните координаты точек в первом квадранте. Первый квадрант расположен в верхней правой части круга, где координаты x и y принимают положительные значения. Это единственные координаты, которые необходимо запомнить:

    • точка π / 6 имеет координаты () ;
    • точка π / 4 имеет координаты () ;
    • точка π / 3 имеет координаты () ;
    • обратите внимание, что числитель принимает лишь три значения. Если перемещаться в положительном направлении (слева направо по оси x и снизу вверх по оси y ), числитель принимает значения 1 → √2 → √3.
  • Проведите прямые линии и определите координаты точек их пересечения с окружностью. Если вы проведете от точек одного квадранта прямые горизонтальные и вертикальные линии, вторые точки пересечения этих линий с окружностью будут иметь координаты x и y с теми же абсолютными значениями, но другими знаками. Иными словами, можно провести горизонтальные и вертикальные линии от точек первого квадранта и подписать точки пересечения с окружностью теми же координатами, но при этом оставить слева место для правильного знака ("+" или "-").

    • Например, можно провести горизонтальную линию между точками π / 3 и 2π / 3 . Поскольку первая точка имеет координаты ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ), координаты второй точки будут (? 1 2 , ? 3 2 {\displaystyle {\frac {1}{2}},?{\frac {\sqrt {3}}{2}}} ), где вместо знака "+" или "-" поставлен знак вопроса.
    • Используйте наиболее простой способ: обратите внимание на знаменатели координат точки в радианах. Все точки со знаменателем 3 имеют одинаковые абсолютные значения координат. То же самое относится к точкам со знаменателями 4 и 6.
  • Для определения знака координат используйте правила симметрии. Существует несколько способов определить, где следует поставить знак "-":

    • вспомните основные правила для обычных графиков. Ось x отрицательна слева и положительна справа. Ось y отрицательна снизу и положительна сверху;
    • начните с первого квадранта и проведите линии к другим точкам. Если линия пересечет ось y , координата x изменит свой знак. Если линия пересечет ось x , изменится знак у координаты y ;
    • запомните, что в первом квадранте положительны все функции, во втором квадранте положителен только синус, в третьем квадранте положителен лишь тангенс, и в четвертом квадранте положителен только косинус;
    • какой бы метод вы ни использовали, в первом квадранте должно получиться (+,+), во втором (-,+), в третьем (-,-) и в четвертом (+,-).
  • Проверьте, не ошиблись ли вы. Ниже приведен полный список координат "особых" точек (кроме четырех точек на координатных осях), если двигаться по единичной окружности против часовой стрелки. Помните, что для определения всех этих значений достаточно запомнить координаты точек лишь в первом квадранте:

    • первый квадрант: ( 3 2 , 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},{\frac {1}{2}}} ); ( 2 2 , 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} );
    • второй квадрант: ( − 1 2 , 3 2 {\displaystyle -{\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ); ( − 2 2 , 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( − 3 2 , 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},{\frac {1}{2}}} );
    • третий квадрант: ( − 3 2 , − 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ); ( − 2 2 , − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( − 1 2 , − 3 2 {\displaystyle -{\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} );
    • четвертый квадрант: ( 1 2 , − 3 2 {\displaystyle {\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} ); ( 2 2 , − 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( 3 2 , − 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ).
  • Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Тригонометрический круг. Единичная окружность. Числовая окружность. Что это такое?

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно "не очень..."
    И для тех, кто "очень даже...")

    Очень часто термины тригонометрический круг, единичная окружность, числовая окружность плохо понимаются учащимся народом. И совершенно зря. Эти понятия – мощный и универсальный помощник во всех разделах тригонометрии. Фактически, это легальная шпаргалка! Нарисовал тригонометрический круг – и сразу увидел ответы! Заманчиво? Так давайте освоим, грех такой вещью не воспользоваться. Тем более, это совсем несложно.

    Для успешной работы с тригонометрическим кругом нужно знать всего три вещи.

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.

    Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, :

    Мы же здесь будем все подробно разбирать шаг за шагом.

    Тригонометрический круг – не роскошь, а необходимость

    Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

    Очень важно не махать рукой на значения тригонометрических функций , – мол, всегда можно посмотреть в шпору с таблицей значений.

    Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

    Нас выручит ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

    К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, 300 градусов, или -45.


    Никак?.. можно, конечно, подключить формулы приведения … А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

    А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

    Знакомство с тригонометрическим кругом

    Давайте по порядку.

    Сначала выпишем вот такой ряд чисел:

    А теперь такой:

    И, наконец, такой:

    Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

    Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

    И зачем оно нам?

    Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

    Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

    От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

    Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

    Это почему же, спросите вы?

    Не будем разбирать все. Рассмотрим принцип , который позволит справиться и с другими, аналогичными ситуациями.

    Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть 1).

    Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

    Надеюсь, уже что-то становится понятно?

    Так вот точка В и будет соответствовать значению , а точка М – значению

    Аналогично с остальными значениями первой четверти.

    Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . позже.

    Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

    Итак, вот он, ВСЕМОГУЩИЙ , без которого никуда в тригонометрии.

    А вот как пользоваться тригонометрическим кругом, мы поговорим в .

    Что такое единичная окружность . Единичная окружность -- это окружность с радиусом, равным 1, и с центром в начале координат. Вспомните, что уравнение окружности выглядит как x 2 +y 2 =1. Такая окружность может быть использована для нахождения некоторых "особых" тригонометрических соотношений, а также при построении графических изображений. С помощью нее и заключенной в ней линии можно оценивать и численные значения тригонометрических функций.

    Запомните 6 тригонометрических соотношений. Помните, что

    • sinθ=противолежащий катет/гипотенуза
    • cosθ=прилежащий катет/гипотенуза
    • tgθ=противолежащий катет/прилежащий катет
    • cosecθ=1/sin
    • secθ=1/cos
    • ctgθ=1/tg.
  • Что такое радиан . Радиан -- одна из мер для определения величины угла. Один радиан -- это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса. Заметьте, что при этом величина и расположение окружности не играют никакой роли. Следует также знать, чему равно число радиан для полной окружности (360 градусов). Вспомните, что длина окружности равна 2πr, что превышает длину радиуса в 2π раза. Поскольку по определению 1 радиан -- это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Умейте перевести радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан=360 градусов
    • 1 радиан=(360/2π) градусов
    • 1 радиан=(180/π) градусов
    • 360 градусов=2π радиан
    • 1 градус=(2π/360) радиан
    • 1 градус=(π/180) радиан
  • Выучите "особые" углы. Эти углы в радианах составляют π/6, π/3, π/4, π/2, π и произведения данных величин (например, 5π/6)

    Изучите и запомните значения тригонометрических функций для особых углов. Для определения их величин вы должны взглянуть на единичную окружность. Вспомните об отрезке известной длины, заключенном в единичной окружности. Точка на окружности соответствует количеству радиан в образованном угле. Например, углу π/2 соответствует точка на окружности, радиус к которой образует с положительным горизонтальным радиусом угол величиной π/2. Для нахождения значения тригонометрической функции какого-либо угла определяются координаты точки, соответствующей этому углу. Гипотенуза всегда равна единице, поскольку она является радиусом круга, и так как любое число, поделенное на 1, равно самому себе, а противоположный катет равен длине вдоль оси Оy, отсюда следует, что значение синуса какого-либо угла -- это координата y соответствующей точки на окружности. Значение косинуса можно найти схожим образом. Косинус равен длине прилежащего катета, деленной на длину гипотенузы; поскольку последняя равна единице, а длина прилежащего катета равна координате x точки на окружности, отсюда следует, что косинус равен значению этой координаты. Найти тангенс немного сложнее. Тангенс угла прямоугольного треугольника равен противолежащему катету, деленному на прилежащий. В данном случае, в отличие от предыдущих, частное не является константой, поэтому вычисления несколько усложняются. Вспомним, что длина противолежащего катета равна координате y, а прилежащего -- координате x точки на единичной окружности; подставив эти значения, получим, что тангенс равен y/x. Поделив 1 на найденные выше значения, можно легко найти соответствующие обратные тригонометрические функции. Таким образом, можно рассчитать все основные тригонометрические функции:

    • sinθ=y
    • cosθ=x
    • tgθ=y/x
    • cosec=1/y
    • sec=1/x
    • ctg=x/y
  • Найдите и запомните значения шести тригонометрических функций для углов, лежащих на координатных осях , то есть углов, кратных π/2, таких как 0, π/2, π, 3π/2, 2π и т. д. Для точек круга, находящихся на координатных осях, это не представляет никаких проблем. Если точка лежит на оси Оx, синус равен нулю, а косинус -- 1 или -1, в зависимости от направления. Если же точка лежит на оси Оy, синус будет равняться 1 или -1, а косинус -- 0.

  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/6. Нанесите угол π/6 на единичную окружность. Вы знаете, как находить длины всех сторон особых прямоугольных треугольников (с углами 30-60-90 и 45-45-90) по известной длине одной из сторон, а поскольку π/6=30 градусов, данный треугольник является одним из особых случаев. Для него, как вы помните, короткий катет равен 1/2 гипотенузы, то есть координата y составляет 1/2, а длинный катет длиннее короткого в √3 раз, то есть равен (√3)/2, так что координата x будет (√3)/2. Таким образом, получаем точку на единичной окружности со следующими координатами: ((√3)/2,1/2). Пользуясь приведенными выше равенствами, находим:

    • sinπ/6=1/2
    • cosπ/6=(√3)/2
    • tgπ/6=1/(√3)
    • cosecπ/6=2
    • secπ/6=2/(√3)
    • ctgπ/6=√3
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/3. Угол π/3 отображается на окружности точкой, у которой координата x равна координате y угла π/6, а координата y такая же, как x для этого угла. Таким образом, точка имеет координаты (1/2, √3/2). В итоге получаем:

    • sinπ/3=(√3)/2
    • cosπ/3=1/2
    • tgπ/3=√3
    • cosecπ/3=2/(√3)
    • secπ/3=2
    • ctgπ/3=1/(√3)
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/4. Длина гипотенузы прямоугольного треугольника с углами 45-45-90 относится к длинам его катетов как √2 к 1, так же будут соотноситься и значения координат точки на единичной окружности. В итоге имеем:

    • sinπ/4=1/(√2)
    • cosπ/4=1/(√2)
    • tgπ/4=1
    • cosecπ/4=√2
    • secπ/4=√2
    • ctgπ/4=1
  • Определите, положительно или отрицательно значение функции. Все углы, принадлежащие одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку (одно быть положительным, второе -- отрицательным).
    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cosec, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.