Основные операции над матрицами. Матрицы, действия над матрицами. Обратная матрица. Ранг матрицы Матрица и операции над ними

Матрицы. Виды матриц. Операции над матрицами и их свойства.

Определитель матрицы n-го порядка. N, Z,Q, R,C,

Матрицей порядка m*n называется прямоугольная таблица из чисел, содержащая m-строк и n - столбцов.

Равенство матриц:

Две матрицы называются равными, если число строк и столбцов одной из них равно соответственно числу строк и столбцов другой и соответст. эл-ты этих матриц равны.

Замечание: Эл-ты имеющие одинаковые индексы являются соответствующими.

Виды матриц:

Квадратная матрица: матрица называется квадратной, если число её строк равно числу столбцов.

Прямоугольная: матрица называется прямоугольной, если число строк не равно числу столбцов.

Матрица строка: матрица порядка 1*n (m=1) имеет вид a11,a12,a13 и называется матрицей строки.

Матрица столбец:………….

Диагональная: диагональ квадратной матрицы, идущая от верхнего левого угла к правому нижнему углу, то есть состоящая из элементов а11,а22……-называется главной диагональю. (опред: квадратная матрица все элементы которой равны нулю, кроме тех, что расположены на главной диагонали, называется диагональной матрицей.

Единичная: диагональная матрица называется единичной, если все элементы расположены на главной диагонали и равны 1.

Верхняя треугольная: А=||aij|| называется верхней треугольной матрицей, если aij=0. При условии i>j.

Нижняя треугольная: aij=0. i

Нулевая: это матрица Эл-ты которой равны 0.

Операции над матрицами.

1.Транспонирование.

2.Умножение матрицы на число.

3.Сложение матриц.


4.Умножение матриц.

Основные св-ва действия над матрицами.

1.A+B=B+A (коммутативность)

2.A+(B+C)=(A+B)+C (ассоциативность)

3.a(A+B)=aA+aB (дистрибутивность)

4.(a+b)A=aA+bA (дистриб.)

5.(ab)A=a(bA)=b(aA) (асооц.)

6.AB≠BA (отсутствует комму.)

7.A(BC)=(AB)C (ассоц.) –выполняется, если опред. Произведений матриц выполняется.

8.A(B+C)=AB+AC (дистриб.)

(B+C)A=BA+CA (дистриб.)

9.a(AB)=(aA)B=(aB)A

Определитель квадратной матрицы – определение и его свойства. Разложение определителя по строкам и столбцам. Способы вычисления определителей.

Если матрица А имеет порядок m>1, то определитель этой матрицы – число.

Алгебраическим дополнением Aij эл-та aij матрицы А называется минор Mij, умноженный на число

ТЕОРЕМА1: Определитель матрицы А равен сумме произведений всех элементов произвольной строки (столбца) на их алгебраические дополнения.

Основные свойства определителей.

1. Определитель матрицы не изменится при её транспонировании.

2. При перестановки двух строк (столбцов) определитель меняет знак, а абсолютная величина его не меняется.

3. Определитель матрицы, имеющий две одинаковые строки (столбцы) равен 0.

4.При умножении строки (столбца) матрицы на число её определитель умножается на это число.

5. Если одна из строк (столбцов) матрицы состоит из 0, то определитель этой матрицы равен 0.

6. Если все элементы i-ой строки (столбца) матрицы представлены в виде суммы двух слагаемых, то её определитель можно представить в виде суммы определителей двух матриц.

7. Определитель не изменится, если к элементам одного столбца (строки) прибавить соответственно эл-ты другого столбца (строки) предварительно умнож. на одно и того же число.

8.Сумма произвольных элементов какого либо столбца (строки) определителя на соответствующее алгебраическое дополнение элементов другого столбца (строки) равна 0.

https://pandia.ru/text/78/365/images/image004_81.gif" width="46" height="27">

Способы вычисления определителя:

1. По определению или теореме 1.

2. Приведение к треугольному виду.

Определение и свойства обратной матрицы. Вычисление обратной матрицы. Матричные уравнения.

Определение: Квадратная матрица порядка n, называется обратной к матрице А того же порядка и обозначается

Для того чтобы для матрицы А существовала обратная матрица необходимо и достаточно, чтобы определитель матрицы А был отличен от 0.

Свойства обратной матрицы:

1. Единственность: для данной матрицы А её обратная – единственная.

2. определитель матрицы

3. Операция взятия транспонирования и взятие матрицы обратной.

Матричные уравнения:

Пусть А и В две квадратные матрицы того же порядка.

https://pandia.ru/text/78/365/images/image008_56.gif" width="163" height="11 src=">

Понятие линейной зависимости и независимости столбцов матрицы. Свойства линейной зависимости и линейной независимости системы столбцов.

Столбцы А1,А2…Аn называются линейно зависимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Столбцы А1,А2…Аn называются линейно независимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Линейная комбинация называется тривиальной, если все коэффициенты С(l) равны 0 и не тривиальной в противном случае.


https://pandia.ru/text/78/365/images/image010_52.gif" width="88" height="24">

2.для того чтобы столбцы были линейно зависимы необходимо и достаточно, чтобы какой-нибудь столбец являлся линейной комбинацией других столбцов.

Пусть 1 из столбцов https://pandia.ru/text/78/365/images/image014_42.gif" width="13" height="23 src=">является линейной комбинацией других столбцов.

https://pandia.ru/text/78/365/images/image016_38.gif" width="79" height="24"> линейно зависимы, то и все столбцы линейно зависимы.

4. Если система столбцов линейно независима, то любая её подсистема так же линейно независима.

(Всё что сказано относительно столбцов, справедливо и для строк).

Миноры матрицы. Базисные миноры. Ранг матрицы. Метод окаймляющих миноров вычисления ранга матрицы.

Минором порядка к матрицы А называется определитель элементы которого расположены на пересечении к-строк и к-стролбцов матрицы А.

Если все миноры к-го порядка матрицы А =0, то любой минор порядка к+1 тоже равен 0.

Базисный минор.

Рангом матрицы А называется порядок её базисного минора.

Метод окаймляющих миноров: - Выбираем не нулевой элемент матрицы А (Если такого элемента не существует, то ранг А =0)

Окаймляем минор предыдущий 1-го порядка минором 2-го порядка. (Если этот минор не равен 0, то ранг >=2) Если ранг этого минора =0, то окаймляем выбранный минор 1-го порядка другими минорами 2-го порядка. (Если все миноры 2-го порядка =0, то ранг матрицы = 1).

Ранг матрицы. Способы нахождения ранга матрицы.

Рангом матрицы А называется порядок его базисного минора.

Способы вычисления:

1) Метод окаймляющих миноров: -Выбираем ненулевой элемент матрицы А (если такого элемента нет, то ранг =0) – Окаймляем минор предыдущий 1-го порядка минором 2-го порядка..gif" width="40" height="22">r+1 Mr+1=0.

2)Приведение матрицы к ступенчатому виду: этот метод основан на элементарных преобразованиях. При элементарных преобразованиях ранг матрицы не меняется.

Элементарными преобразованиями называются следующие преобразования:

Перестановка двух строк (столбцов).

Умножение всех элементов некоторого столбца (строки) на число не =0.

Прибавление ко всем элементам некоторого столбцы (строки) элементов другого столбца (строки), предварительно умноженных на одно и тоже число.

Теорема о базисном миноре. Необходимое и достаточное условие равенства нулю определителя.

Базисным минором матрицы А называется минор наибольшего к-го порядка отличного от 0.

Теорема о базисном миноре:

Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы А являются линейной комбинацией базисных строк (столбцов).

Замечания: Строки и столбцы на пересечении которых стоит базисный минор называются соответственно базисными строками и столбцами.

a11 a12… a1r a1j

a21 a22….a2r a2j

a31 a32….a3r a3j

ar1 ar2 ….arr arj

ak1 ak2…..akr akj

Необходимые и достаточные условия равенства нулю определителя:

Для того чтобы определитель n-го порядка =0, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Системы линейных уравнений, их классификация и формы записи. Правило Крамера.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

https://pandia.ru/text/78/365/images/image020_29.gif" alt="l14image048" width="64" height="38 id=">

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

https://pandia.ru/text/78/365/images/image022_23.gif" alt="l14image052" width="93" height="22 id=">

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

https://pandia.ru/text/78/365/images/image024_24.gif" alt="l14image056" width="247" height="31 id=">

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

https://pandia.ru/text/78/365/images/image026_23.gif" alt="l14image060" width="324" height="42 id=">

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Системы линейных уравнений. Условие совместимости линейных уравнений. Теорема Кронекера-Капелли.

Решением системы алгебраических уравнений называется такая совокупность n чисел C1,C2,C3……Cn, которая при подстановки в исходную систему на место x1,x2,x3…..xn обращает все уравнения системы в тождества.

Система линейных алгебраических уравнений называется совместной, если она имеет хотя бы одно решение.

Совместная система называется определённой, если она имеет единственное решение, и неопределённой, если она имеет бесчисленно много решений.

Условия совместности систем линейных алгебраических уравнений.

a11 a12 ……a1n x1 b1

a21 a22 ……a2n x2 b2

……………….. .. = ..

am1 am2…..amn xn bn

ТЕОРЕМА: Для того чтобы система m линейных уравнений с n неизвестными была совместной необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу матрицы А.

Замечание: Эта теорема даёт лишь критерии существования решения, но не указывает способа отыскивания решения.

10 вопрос.

Системы линейных уравнений. Метод базисного минора - общий метод отыскивания всех решений систем линейных уравнений.

A=a21 a22…..a2n

Метод базисного минора:

Пусть система совместна и RgA=RgA’=r. Пусть базисный минор расписан в верхнем левом углу матрицы А.

https://pandia.ru/text/78/365/images/image035_20.gif" width="22" height="23 src=">…...gif" width="23" height="23 src=">…...gif" width="22" height="23 src=">…...gif" width="46" height="23 src=">-…..-a

d2 b2-a(2r+1)x(r+1)-..-a(2n)x(n)

… = …………..

Dr br-a(rr+1)x(r+1)-..-a(rn)x(n)

https://pandia.ru/text/78/365/images/image050_12.gif" width="33" height="22 src=">

Замечания: Если ранг основной матрицы и рассматриваемой равен r=n, то в этом случае dj=bj и система имеет единственное решение.

Однородные системы линейных уравнений.

Система линейных алгебраических уравнений называется однородной, если все ее свободные члены равны нулю.

AX=0 – однородная система.

АХ =В – неоднородная система.

Однородные системы всегда совместны.

Х1 =х2 =..=хn =0

Теорема 1.

Однородные системы имеют неоднородные решения, когда ранг матрицы системы меньше числа неизвестных.

Теорема 2.

Однородная система n-линейных уравнений с n-неизвестными имеет не нулевое решение, когда определитель матрицы А равен нулю. (detA=0)

Свойства решений однородных систем.

Любая линейная комбинация решения однородной системы сама является решением этой системы.

α1C1 +α2C2 ; α1 и α2– некоторые числа.

А(α1C1 +α2C2) = А(α1C1) +А(α2C2) = α1(А C1) + α2(АC2) = 0,т. к. (А C1) = 0; (АC2) = 0

Для неоднородной системы это свойство не имеет места.

Фундаментальная система решений.

Теорема 3.

Если ранг матричной системы уравнения с n-неизвестными равен r, то эта система имеет n-r линейно-независимых решений.

Пусть базисный минор в левом верхнем углу. Если r< n, то неизвестные х r+1;хr+2;..хn называются свободными переменными, а систему уравнений АХ=В запишем, как Аr Хr =Вr

C1 = (C11 C21 .. Cr1 , 1,0..0)

C2 = (C21 C22 .. C2r,0, 1..0) <= Линейно-независимы.

……………………..

Cn-r = (Cn-r1 Cn-r2 .. Cn-rr ,0, 0..1)

Система n-r линейно-независимых решений однородной системы линейных уравнений с n-неизвестными ранга r называется фундаментальной системой решений.

Теорема 4.

Любое решение системы линейных уравнений есть линейная комбинация решения фундаментальной системы.

С = α1C1 +α2C2 +.. + αn-r Cn-r

Если r

12 вопрос.

Общее решение неоднородной системы.

Сон (общ. неоднор.) = Соо +Сч (частное)

АХ=В (неоднородная система) ; АХ= 0

(АСоо) +АСч = АСч = В, т. к. (АСоо) = 0

Сон= α1C1 +α2C2 +.. + αn-r Cn-r + Сч

Метод Гаусса.

Это метод последовательных исключений неизвестных (переменных) – заключается в том, что с помощью элементарных преобразований, исходная система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находят все остальные переменные.

Пусть а≠0 (если это не так, то перестановкой уравнений добиваются этого).

1)исключаем переменную х1 из второго, третьего…n-ого уравнения, умножая первое уравнение на подходящие числа и прибавляя полученные результаты ко 2-ому, 3-ему…n-ому уравнению, тогда получаем:

Получаем систему равносильную исходной.

2)исключаем переменную х2

3) исключаем переменную х3 и т. д.

Продолжая процесс последовательного исключения переменных х4;х5...хr-1 получим для (r-1)-ого шага.

Число ноль последних n-r в уравнениях означают, что их левая часть имеет вид: 0х1 +0х2+..+0хn

Если хотя бы одно из чисел вr+1, вr+2… не равны нулю, то соответственное равенство противоречиво и система (1) не совместна. Таким образом, для всякой совместной системы эта вr+1 … вm равна нулю.

Последнее n-r уравнение в системе (1;r-1) являются тождествами и их можно не принимать во внимание.

Возможны два случая:

а)число уравнений системы (1;r-1) равно числу неизвестных, т. е. r=n (в этом случае система имеет треугольный вид).

б)r

Переход от системы (1) к равносильной ей системе (1;r-1) называется прямым ходом метода Гаусса.

О нахождение переменной из системы (1;r-1) – обратным ходом метода Гаусса.

Преобразования Гаусса удобно проводить, осуществляя их не с уравнениями, а с расширенной матрицей их коэффициентов.

13 вопрос.

Подобные матрицы.

Будем рассматривать только квадратные матрицы порядка n/

Матрица А называется подобной матрице В (А~В), если существует такая неособенная матрица S, что А=S-1BS.

Свойства подобных матриц.

1)Матрица А подобна сама себе. (А~А)

Если S=Е, тогда ЕАЕ=Е-1АЕ=А

2)Если А~В, то В~А

Если А=S-1ВS => SAS-1= (SS-1)B(SS-1)=B

3)Если А~В и одновременно В~С, то А~С

Дано, что А=S1-1BS1, и В=S2-1CS2 => A= (S1-1 S2-1) C(S2 S1) = (S2 S1)-1C(S2 S1) = S3-1CS3, где S3 = S2S1

4)Определители подобных матриц равны.

Дано, что А~В, надо доказать, что detA=detB.

A=S-1 BS, detA=det(S-1 BS)= detS-1* detB* detS = 1/detS *detB*detS (сокращаем) = detB.

5)Ранги подобных матриц совпадают.

Собственные векторы и собственные значения матриц.

Число λ называется собственным значением матрицы А, если существует ненулевой вектор Х(матр. столбец) такой, что АХ= λ Х, вектор Х называется собственным вектором матрицы А, а совокупность всех собственных значений называется спектром матрицы А.

Свойства собственных векторов.

1)При умножении собственного вектора на число получим собственный вектор с тем же собственным значением.

АХ= λ Х; Х≠0

α Х => А(α Х) = α (АХ) = α(λ Х) = = λ (αХ)

2) Собственные векторы с попарно-различными собственными значениями линейно независимы λ1, λ2,.. λк.

Пусть система состоит из 1-ого вектора, сделаем индуктивный шаг:

С1 Х1 +С2 Х2 + .. +Сn Хn = 0 (1) – умножаем на А.

С1 АХ1 +С2 АХ2 + .. +Сn АХn = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn = 0

Умножаем на λn+1 и вычтем

С1 Х1 +С2 Х2 + .. +Сn Хn+ Сn+1 Хn+1 = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn+ Сn+1 λn+1 Хn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn + Cn+1 (λn+1 –λn+1)Xn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn = 0

Надо чтобы С1 =С2 =… = Сn = 0

Сn+1 Хn+1 λn+1 =0

Характеристическое уравнение.

А-λЕ называется характеристической матрицей для матрицы А.

Для того, чтобы ненулевой вектор Х был собственным вектором матрицы А, соответствующий собственному значению λ необходимо чтобы он являлся решением однородной системы линейно-алгебраических уравнений (А - λЕ)Х = 0

Нетривиальное решение система имеет тогда, когда det (А - XЕ) = 0 - это характеристическое уравнение.

Утверждение!

Характеристические уравнения подобных матриц совпадают.

det(S-1AS – λЕ) = det(S-1AS – λ S-1ЕS) =det(S-1 (A – λЕ)S) = det S-1 det(A – λЕ) detS= det(A – λЕ)

Характеристический многочлен.

det(A – λЕ)- функция относительно параметра λ

det(A – λЕ) = (-1)n Xn +(-1)n-1(a11+a22+..+ann)λn-1+..+detA

Этот многочлен и называется характеристическим многочленом матрицы А.

Следствие:

1)Если матрицы А~В, то сумма их диагональных элементов совпадает.

a11+a22+..+ann = в11+в22+..+вnn

2)Множество собственных значений подобных матриц совпадают.

Если характеристические уравнения матриц совпадают, то они необязательно подобны.

Для матрицы А

Для матрицы В

https://pandia.ru/text/78/365/images/image062_10.gif" width="92" height="38">

Det(Ag-λE) = (λ11 – λ)(λ22 – λ)…(λnn – λ)= 0

Для того чтобы матрица А порядка n была диагонализируема, необходимо, чтобы существовали линейно-независимые собственные вектора матрицы А.

Следствие.

Если все собственные значения матрица А различны, то она диагонализируема.

Алгоритм нахождения собственных векторов и собственных значений.

1)составляем характеристическое уравнение

2)находим корни уравнений

3)составляем систему уравнений для определения собственного вектора.

λi (A-λi E)X = 0

4)находим фундаментальную систему решений

x1,x2..xn-r, где r - ранг характеристической матрицы.

r =Rg(A - λi E)

5)собственный вектор, собственные значения λi записываются в виде:

X = С1 Х1 +С2 Х2 + .. +Сn-r Хn-r, где С12 +С22 +… С2n ≠0

6)проверяем, может ли матрица быть приведена к диагональному виду.

7)находим Ag

Ag = S-1AS S=

15 вопрос.

Базис прямой, плоскости, пространства.

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">│, ││). Модуль вектора равен нулю, тогда, когда этот вектор нулевой (│ō│=0)

4.Орт вектора.

Ортом данного вектора называется вектор, который направлен одинаково с данным вектором и имеет модуль, равный единице.

Равные вектора имеют равные орты.

5.Угол между двумя векторами.

Это меньшая часть площади, ограниченная двумя лучами, исходящими из одной точки и направленные одинаково с данными векторами.

Сложение векторов. Умножение вектора на число.

1)Сложение двух векторов

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">+ │≤│ │+│ │

2)Умножение вектора на скаляр.

Произведением вектора и скаляра называют новый вектор, который имеет:

а) = произведения модуля умножаемого вектора на абсолютную величину скаляра.

б) направление одинаковое с умножаемым вектором, если скаляр положителен, и противоположное, если скаляр отрицателен.

λ а(вектор)=>│ λ │= │ λ │=│ λ ││ │

Свойства линейных операций над векторами.

1.Закон коммунитативности.

2. Закон ассоциативности.

3. Сложение с нулем.

а(вектор)+ō= а(вектор)

4.Сложение с противоположным.

5. (αβ) = α(β) = β(α)

6;7.Закон дистрибутивности.

Выражение вектора через его модуль и орт.

Максимальное число линейно-независимых векторов называются базисом.

Базисом на прямой является любой ненулевой вектор.

Базисом на плоскости являются любые два некаллениарных вектора.

Базисом в пространстве является система любых трех некомпланарных векторов.

Коэффициент разложения вектора по некоторому базису называется компонентами или координатами вектора в данном базисе.

https://pandia.ru/text/78/365/images/image075_10.gif" height="11 src=">.gif" height="11 src="> выполнить действие сложения и умножения на скаляр, то в результате любого числа таких действий получим:

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-зависимыми, если существует их нетривиальная линейная комбинация, равная ō.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-НЕзависимыми, если не существует их нетривиальная линейная комбинация.

Свойства линейно-зависимых и Независимых векторов:

1)система векторов, содержащая нулевой вектор линейно-зависима.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> были линейно-зависимыми, необходимо, чтобы какой-нибудь вектор являлся линейной комбинацией других векторов.

3)если часть векторов из системы а1(вектор), а2(вектор)… ак(вектор) линейно-зависимы, то и все вектора линейно-зависимы.

4)если все вектора https://pandia.ru/text/78/365/images/image076_9.gif" height="11 src=">.gif" width="75" height="11">

https://pandia.ru/text/78/365/images/image082_10.gif" height="11 src=">.gif" height="11 src=">)

Линейные операции в координатах.

https://pandia.ru/text/78/365/images/image069_9.gif" height="12 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" width="65" height="13 src=">

Свойства скалярного произведения:

1. Комутативность

3. (a;b)=0, тогда и только тогда, когда векторы ортоганальны или какой нибудь из векторов равен 0.

4. Дистрибутивность (αa+βb;c)=α(a;c)+β(b;c)

5. Выражение скалярного произведения a и b через их координаты

https://pandia.ru/text/78/365/images/image093_8.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image095_8.gif" width="254" height="13 src=">

При выполнении условия () , h, l=1,2,3

https://pandia.ru/text/78/365/images/image098_7.gif" width="176" height="21 src=">

https://pandia.ru/text/78/365/images/image065_9.gif" height="11"> и называется третий вектор который удовлетворяет следующим уравнениям:

3. – правая

Свойства векторного произведения:

4. Векторное произведение координатных ортов

Ортонормированый базис.

https://pandia.ru/text/78/365/images/image109_7.gif" width="41" height="11 src=">

https://pandia.ru/text/78/365/images/image111_8.gif" width="41" height="11 src=">

Часто для обозначения ортов ортонормированного базиса используются 3 символа

https://pandia.ru/text/78/365/images/image063_10.gif" width="77" height="11 src=">

https://pandia.ru/text/78/365/images/image114_5.gif" width="549" height="32 src=">

Если - это ортонормированный базис, то

https://pandia.ru/text/78/365/images/image117_5.gif" width="116" height="15">- уравнение прямой параллельной оси ОХ

2) - уравнение прямой параллельной оси ОУ

2. Взамное расположение 2-х прямых.

Теорема 1 Пусть относительно аффинной системы координат даны уравнения прямых

А) Тогда необходимое и достаточное условие когда они пересекаются имеет вид:

Б) Тогда необходимое и достаточное условие того что прямые паралельны является условие:

B) Тогда необходимым и достаточным условием того что прямые сливаются в одну является условие:

3. Расстояние от точки до прямой.

Теорема. Расстояние от точки до прямой относительно декартовой системы координат:

https://pandia.ru/text/78/365/images/image127_7.gif" width="34" height="11 src=">

4. Угол между двумя прямыми. Условие перпендикулярности.

Пусть 2 прямые заданы относительно декартовой системы координат общими уравнениями.

https://pandia.ru/text/78/365/images/image133_4.gif" width="103" height="11 src=">

Если , то прямые перпендикулярны.

24 вопрос.

Плоскость в пространстве. Условие комплонарности вектора и плоскости. Расстояние от точки до плоскости. Условие параллельности и перпендикулярности двух плоскостей.

1. Условие комплонарности вектора и плоскости.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image140.jpg" alt="Безымянный4.jpg" width="111" height="39">

https://pandia.ru/text/78/365/images/image142_6.gif" width="86" height="11 src=">

https://pandia.ru/text/78/365/images/image144_6.gif" width="148" height="11 src=">

https://pandia.ru/text/78/365/images/image145.jpg" alt="Безымянный5.jpg" width="88" height="57">

https://pandia.ru/text/78/365/images/image147_6.gif" width="31" height="11 src=">

https://pandia.ru/text/78/365/images/image148_4.gif" width="328" height="24 src=">

3. Угол между 2-я плоскостями. Условие перпендикулярности.

https://pandia.ru/text/78/365/images/image150_6.gif" width="132" height="11 src=">

Если , то плоскости перпендикулярны.

25 вопрос.

Прямая линя в пространстве. Различные виды уравнения прямой линии в пространстве.

https://pandia.ru/text/78/365/images/image156_6.gif" width="111" height="19">

2. Векторное уравнение прямой в пространстве.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image162_5.gif" width="44" height="29 src=">

4. Каноническое уравнение прямое.

https://pandia.ru/text/78/365/images/image164_4.gif" width="34" height="18 src=">

https://pandia.ru/text/78/365/images/image166_0.jpg" alt="Безымянный3.jpg" width="56" height="51">

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Следующее свойство определителя связано с понятиями минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, на пересечении которых этот элемент расположен.

Например, минором элемента определителя называется определитель .

Алгебраическим дополнением элементаопределителя называется его минор, умноженный на, гдеi − номер строки, j − номер столбца, на пересечении которых находится элемент . Алгебраическое дополнение обычно обозначается. Для элементаопределителя 3-го порядка алгебраическое дополнение

9. Определитель равен сумме произведений элементов какой-либо строки (столбца) на соответствующие им алгебраические дополнения.

Например, определитель можно разложить по элементам первой строки

,

или второго столбца

Свойства определителей применяются для их вычисления.

Некоторые свойства операций над матрицами.
Матричные выражения

А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами .

Некоторые свойства операций над матрицами

Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.

Рассмотрим некоторые исключения из правила , которые потребуются для выполнения практических задач.

Если у квадратной матрицы существует обратная матрица , то их умножение коммутативно:

Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: , и т.д.

При этом справедливо следующее свойство : если произвольную матрицу умножить слева или справа на единичную матрицу подходящих размеров, то в результате получится исходная матрица:

Как видите, здесь также имеет место коммутативность матричного умножения.

Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: .

Желающие могут провести проверку и убедиться, что:

Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.

Коммутативность числового множителя относительно умножения матриц

Для матриц и действительного числа справедливо следующее свойство:

То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.

Примечание : вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.

Пример 4

Вычислить произведение

Решение :

(1) Согласно свойству перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!

(2) – (3) Выполняем матричное умножение.

(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .

Ответ :

Маленькая шарада для самостоятельного решения:

Пример 5

Вычислить , если

Решение и ответ в конце урока.

Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь .

Прицепим к локомотиву ещё один вагон:

Как умножить три матрицы?

Прежде всего, ЧТО должно получиться в результате умножения трёх матриц ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)

Произведение трёх матриц можно вычислить двумя способами:

1) найти , а затем домножить на матрицу «цэ»: ;

2) либо сначала найти , потом выполнить умножение .

Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения :

Пример 6

Перемножить матрицы двумя способами

Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.

1) Используем формулу

Действие первое:

Действие второе:

2) Используем формулу

Действие первое:

Действие второе:

Ответ :

Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ . Так, во втором пункте на втором шаге выполняем умножение , но ни в коем случае не . С обычными числами такой бы номер прошёл, а с матрицами – нет.

Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:

Пример 7

Найти произведение трёх матриц

Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.

Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.

Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:

Как возвести матрицу в куб и более высокие степени?

Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу в куб, нужно вычислить произведение:

Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: . А матрица, умноженная сама на себя – это квадрат матрицы:

Таким образом, получаем рабочую формулу:

То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу умножить на матрицу .

Пример 8

Возвести матрицу в куб.

Это небольшая задачка для самостоятельного решения.

Возведение матрицы в четвёртую степень проводится закономерным образом:

Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: – это произведение трёх матриц.

1) . Иными словами, сначала находим , затем домножаем его на «бэ» – получаем куб, и, наконец, выполняем умножение ещё раз – будет четвёртая степень.

2) Но существует решение на шаг короче: . То есть, на первом шаге находим квадрат и, минуя куб, выполняем умножение

Дополнительное задание к Примеру 8:

Возвести матрицу в четвёртую степень.

Как только что отмечалось, сделать это можно двумя способами:

1) Коль скоро известен куб, то выполняем умножение .

2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень , то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой .

Оба варианта решения и ответ – в конце урока.

Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:

1) находим ;
2) находим ;
3) возводим матрицу в пятую степень: .

Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.

Во втором разделе урока ожидается не менее пёстрая тусовка.

Матричные выражения

Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки , затем выполняется возведение в степень / извлечение корней , потом умножение / деление и в последнюю очередь – сложение /вычитание .

Если числовое выражение имеет смысл, то результат его вычисления является числом , например:

Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.

Рассмотрим матричное выражение , где – некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.

В первом слагаемом сначала нужно транспонировать матрицу «бэ»: , потом выполнить умножение и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение . Скобки, как и в числовых выражениях, меняют порядок действий: – тут сначала выполняется умножение , потом полученная матрица транспонируется и умножается на 2.

Во втором слагаемом в первую очередь выполняется матричное умножение , и обратная матрица находится уже от произведения. Если скобки убрать: , то сначала необходимо найти обратную матрицу , а затем перемножить матрицы: . Нахождение обратной матрицы также имеет приоритет перед умножением .

С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.

Если матричное выражение имеет смысл, то результат его вычисления является матрицей .

Все задания будут из реальных контрольных работ, и мы начнём с самого простого:

Пример 9

Даны матрицы . Найти:

Решение :порядок действий очевиден, сначала выполняется умножение, затем сложение.


Сложение выполнить невозможно, поскольку матрицы разных размеров.

Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.

Пробуем вычислить второе выражение:

Тут всё нормально.

Ответ : действие выполнить невозможно, .

Лекция 1. «Матрицы и основные действия над ними. Определители

Определение. Матрицей размера m n , где m - число строк, n - число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются a ij , где i - номер строки, а j - номер столбца.

А =

Основные действия над матрицами.

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной .

Определение. Матрица вида:

= E ,

называется единичной матрицей .

Определение. Если a mn = a nm , то матрица называется симметрической .

Пример.
- симметрическая матрица

Определение. Квадратная матрица вида
называется диагональной матрицей.

Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера . Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.


c ij = a ij b ij

С = А + В = В + А.

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

(А+В) =  А   В А( ) =  А   А

Пример. Даны матрицы А =
; B =
, найти 2А + В.

2А =
, 2А + В =
.

Операция умножения матриц .

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

A B = C ;
.

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

Свойства операции умножения матриц.

1)Умножение матриц не коммутативно , т.е. АВ  ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А Е = Е А = А

Очевидно, что для любых матриц выполняются следующее свойство:

A O = O ; O A = O ,

где О – нулевая матрица.

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4) Если произведение АВ определено, то для любого числа  верно соотношение:

(AB ) = (A ) B = A (B ).

5) Если определено произведение АВ, то определено произведение В Т А Т и выполняется равенство:

(АВ) Т = В Т А Т, где

индексом Т обозначается транспонированная матрица.

6) Заметим также, что для любых квадратных матриц det (AB) = detA  detB.

Что такое det будет рассмотрено ниже.

Определение . Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием , если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А =
; В = А Т =
;

другими словами, b ji = a ij .

В качестве следствия из предыдущего свойства (5) можно записать, что:

(ABC ) T = C T B T A T ,

при условии, что определено произведение матриц АВС.

Пример. Даны матрицы А =
, В = , С =
и число
 = 2. Найти А Т В+  С.

A T =
; A T B =
=
=
;

C =
; А Т В+  С =
+
=
.

Пример. Найти произведение матриц А = и В =
.

АВ = 
=
.

ВА =
 = 2  1 + 4  4 + 1  3 = 2 + 16 + 3 = 21.

Пример. Найти произведение матриц А=
, В =

АВ =

=
=
.

Определители (детерминанты).

Определение. Определителем квадратной матрицы А=
называется число, которое может быть вычислено по элементам матрицы по формуле:

det A =
, где (1)

М – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.

Формула (1) позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:

det A =
(2)

Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:

detA =
, i = 1,2,…,n . (3)

Очевидно, что различные матрицы могут иметь одинаковые определители.

Определитель единичной матрицы равен 1.

Для указанной матрицы А число М 1к называется дополнительным минором элемента матрицы a 1 k . Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.

Определение. Дополнительный минор произвольного элемента квадратной матрицы a ij равен определителю матрицы, полученной из исходной вычеркиванием i -ой строки и j -го столбца.

Свойство1. Важным свойством определителей является следующее соотношение:

det A = det A T ;

Свойство 2. det (A B) = det A det B.

Свойство 3. det (AB ) = detA detB

Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.

Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.

Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.

Определение: Столбцы (строки) матрицы называются линейно зависимыми , если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)

Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.

Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d 1 d 2 , e = e 1 e 2 , f = det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13; det (AB) = det A  det B = -26.

2- й способ: AB =
, det (AB ) = 7 18 - 8 19 = 126 –

152 = -26.

Перейдем к определению операций над матрицами.

1) Сложение матриц . Сумой двух матриц A =(a ij ) и B =(b ij ) одного и того же размера m ×n называется матрица C =(c ij ) того же размера m × n , элементы которой равны

с ij = a ij + b ij (i= 1,2, … , m ; j= 1,2, … ,n ). (1)

Для обозначения суммы матриц используется запись C =A + B .

2) Умножение матрицы на число . Произведением (m × n )- матрицы А на число λ называется (m × n )-матрица C = (c ij ), элементы которой равны

с ij = λ a ij (i= 1,2, … , m ; j= 1,2, … ,n ). (2)

Для обозначения произведения матрицы на число используется запись C = λ∙A .

Непосредственно из формул (1) и (2) ясно, что две введенные операции обладают свойствами:

а) А+В = В+А – коммутативность сложения;

б) (А+В )+С = А+ (В+С ) – ассоциативность сложения;

в) (λμ)А =λ(μА ) – ассоциативность умножения на число;

г) λ(А+В ) = λА В – дистрибутивность умножения относительно сложения.

Замечание 1. Разность матриц можно определить следующим образом:

А–В = А +(–1)В .

Кратко говоря, сложение, вычитание матриц и умножение матрицы на число производится поэлементно.

Пример:

3) Умножение матриц . Произведением (m × n )-матрицы А =(а ij ) на (n × p )- матрицу B =(b ij ) называется (m × p )-матрица С =(с ij ), элементы которой вычисляются по формуле

c ij = a i 1 b 1 j + a i 2 b 2 j +…+ a in b nj ,

которую с использованием символа суммирования можно записать в виде

(i = 1,2, … , m ; j = 1,2, … , p ).

Для обозначения произведения матрицы А на матрицу В используют запись С=А∙В .

Сразу заметим, что матрицу А можно умножить не на всякую матрицу В : необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В .

Формула (3) представляет правило нахождения элементов матрицы А∙В . Сформулируем это правило словесно: элемент c ij , стоящий в i -й строке и j -ом столбце матрицы А∙В , равен сумме попарных произведений соответствующих элементов i -й строки матрицы А и j -го столбца матрицы В .

Приведем пример умножения квадратных матриц второго порядка:

.

Умножение матриц обладает свойствами:

а) (АВ )С = А (ВС ) – ассоциативность;

б) (А+В )С = АС +ВС или А (В+С ) = АВ+АС – дистрибутивность умножения относительно сложения.

Вопрос о коммутативности умножения имеет смысл ставить лишь для квадратных матриц одинакового порядка, ибо только для таких матриц А и В оба произведения АВ и ВА определенны и являются матрицами одинаковых порядков. Элементарные примеры показывают, что умножение матриц, вообще говоря, некоммутативно. Например, если

то

Пример . Для матрицы
найти все матрицы В такие, что

АВ = ВА .

Решение . Введем обозначение
Тогда

Равенство АВ =ВА равносильно системе уравнений

которая, в свою очередь, равносильна системе

Итак, искомая матрица имеет вид
гдеx и z – произвольные числа. Её можно записать и так: В = zA +(x z )E .

Замечание. Единичная и нулевая матрицы n -го порядка перестановочны с любой квадратной матрицы того же порядка, причем АЕ = =ЕА = А , А ∙0 = 0∙А = 0.

Используя операцию умножения, дадим наиболее краткую – матричную – форму записи системы линейных уравнений (1.1). Введем обозначения: А =(а ij ) – (m × n )-матрица коэффициентов системы уравнений; m -мерный столбец свободных членов и

n -мерный столбец неизвестных. Согласно определению произведение А∙ X представляет собой m -мерный столбец. Его элемент, стоящий в i -й строке, имеет вид

a i 1 x 1 + a i 2 x 2 +…+ a in x n .

Но эта сумма есть не что иное, как левая часть i -го уравнения системы (1.1) и по условию она равна b i , т.е. элементу, стоящему в i -й строке столбца В . Отсюда получаем: А∙ X = В . Это и есть матричная запись системы линей-

ных уравнений. Здесь: А – матрица коэффициентов системы, В – столбец свободных членов, X – столбец неизвестных.

4) Транспонирование матрицы. Транспонированием любой матрицы называется операция, в результате которой меняются местами строки и столбцы с сохранением порядка их следования. В результате транспонирования (m × n )-матрицы А получается (m × n )-матрица, обозначаемая символом А´ и называемая транспонированной по отношению к матрице А .

Пример . Для А = (а 1 а 2 а 3) найти А∙А ´ и А ´∙А .

Решение . Транспонированная строка – это столбец. Поэтому:

–квадратная матрица 1 го порядка.

–квадратная матрица 3 го