Молекулярное строение клеточной мембраны. Клеточная мембрана. Строение клеточной мембраны

Клеточные мембраны

В основе структурной организации клетки лежит мембранный принцип строения, то есть клетка в основном построена из мембран. Все биологические мембраны имеют общие структурные особенности и свойства.

В настоящее время общепринята жидкостно-мозаичная модель строения мембраны.

Химический состав и строение мембраны

Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами . Липиды составляют в среднем ≈40% химического состава мембраны. В бислое хвосты молекул в мембране обращены друг к другу, а полярные головки - наружу, поэтому поверхность мембраны гидрофильна. Липиды определяют основные свойства мембран.

Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны. Молекулы белков не образуют сплошного слоя (рис. 280). В зависимости от локализации в мембране различают:

© периферические белки - белки, располагающиеся на наружной или внутренней поверхности липидного бислоя;

© полуинтегральные белки - белки, погруженные в липидный бислой на различную глубину;

© интегральные , или трансмембранные белки - белки, пронизывающие мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки.

Мембранные белки могут выполнять различные функции:

© транспорт определенных молекул;

© катализ реакций, происходящих на мембранах;

© поддержание структуры мембран;

© получение и преобразование сигналов из окружающей среды.


В состав мембраны может входить от 2 до 10% углеводов. Углеводный компонент мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Функции углеводов клеточной мембраны до конца не выяснены, однако можно сказать, что они обеспечивают рецепторные функции мембраны.

В животных клетках гликопротеины образуют надмембранный комплекс - гликокаликс , имеющий толщину в несколько десятков нанометров. В нем происходит внеклеточное пищеварение, располагаются многие рецепторы клетки, с его помощью, по-видимому, происходит адгезия клеток.

Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны. Мембраны асимметричны, то есть липидный и белковый состав наружной и внутренней поверхности мембраны различен.

Толщина плазматической мембраны в среднем 7,5 нм.

Одна из основных функций мембраны - транспортная, обеспечивающая обмен веществ между клеткой и внешней средой. Мембраны обладают свойством избирательной проницаемости, то есть хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Проницаемость мембран для разных веществ зависит и от свойств их молекул (полярность, размер и т.д.), и от характеристики мембран (внутренняя часть липидного слоя гидрофобна).

Существуют различные механизмы транспорта веществ через мембрану (рис. 281). В зависимости от необходимости использования энергии для осуществления транспорта веществ, различают:

© пассивный транспорт - транспорт веществ, идущий без затрат энергии;

© активный транспорт - транспорт, идущий с затратами энергии.

Пассивный транспорт

В основе пассивного транспорта лежит разность концентраций и зарядов. При пассивном транспорте вещества всегда перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Различают три основных механизма пассивного транспорта:

© Простая диффузия - транспорт веществ непосредственно через липидный бислой. Через него легко проходят газы, неполярные или малые незаряженные полярные молекулы. Чем меньше молекула и чем более она жирорастворима, тем быстрее она проникает через мембрану. Интересно, что вода, несмотря на то, что она относительно нерастворима в жирах, очень быстро проникает через липидный бислой. Это объясняется тем, что ее молекула мала и электрически нейтральна. Диффузию воды через мембраны называют осмосом .

Диффузия через мембранные каналы . Заряженные молекулы и ионы (Na + , K + , Ca 2+ , Cl -) не способны проходить через липидный бислой путем простой диффузии, тем не менее, они проникают через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих водяные поры.

© Облегченная диффузия - транспорт веществ с помощью специальных

транспортных белков, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. Они взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Таким образом в клетку транспортируются сахара, аминокислоты, нуклеотиды и многие другие полярные молекулы.

Активный транспорт

Необходимость активного транспорта возникает тогда, когда требуется обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ.



Одной из наиболее изученных систем активного транспорта является натрий-калиевый насос. Концентрация K внутри клетки значительно выше, чем за ее пределами, а Na - наоборот. Поэтому К через водяные поры мембраны пассивно диффундирует из клетки, а Na - в клетку. Вместе с тем, для нормального функционирования клетке важно поддерживать определенное соотношение ионов К и Na в цитоплазме и во внешней среде. Это оказывается возможным потому, что мембрана, благодаря наличию (Na + K)-насоса, активно перекачивает Na из клетки, а K в клетку. На работу (Na + K)-насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.


Насос представляет собой особый трансмембранный белок мембраны, способный к конформационным изменениям, благодаря чему он может присоединять к себе как ионы К, так и ионы Na. Цикл работы (Na + K)-насоса складывается из нескольких фаз (рис. 282):

© с внутренней стороны мембраны к белку-насосу поступают ионы Na и молекула АТФ, а с наружной - ионы K;

© ионы Na соединяются с молекулой белка, и белок приобретает АТФ-азную активность, то есть приобретает способность вызывать гидролиз АТФ, сопровождающийся освобождением энергии, приводящей в движение насос;

© освободившийся при гидролизе АТФ фосфат присоединяется к белку, то есть происходит фосфорилирование белка;

© фосфорилирование вызывает конформационные изменения белка, он оказывается неспособным удерживать ионы Na - они высвобождаются и выходят за пределы клетки;

© новая конформация белка такова, что оказывается возможным присоединение к нему ионов K;

© присоединение ионов K вызывает дефосфорилирование белка, в результате чего он вновь изменяет свою конформацию;

© изменение конформации белка приводит к высвобождению ионов K внутри клетки;

© теперь белок вновь готов присоединить к себе ионы Na.

За один цикл работы насос выкачивает из клетки 3 иона Na и закачивает 2 иона К. Такая разница в количестве переносимых ионов связана с тем, что проницаемость мембраны для ионов К выше, чем для ионов Na. Соответственно K быстрее пассивно диффундирует из клетки, чем Na в клетку.

крупных частиц (например, фагоцитоз лимфоцитов, простейших и др.);

© пиноцитоз - процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.

Экзоцитоз - процесс выведения различных веществ из клетки. При экзоцитозе мембрана везикулы (или вакуоли), при соприкосновении с наружной цитоплазматической мембраной, сливается с ней. Содержимое везикулы выводится за пределы летки, а ее мембрана включается в состав наружной цитоплазматической мембраны.

Мембрана - это сверхтонкая структура, образующая поверхности органоидов и клетки в целом. Все мембраны имеют сходное строение и связаны в одну систему.

Химический состав

Мембраны клетки химически однородны и состоят из белков и липидов различных групп:

  • фосфолипидов;
  • галактолипидов;
  • сульфолипидов.

Также в их состав входят нуклеиновые кислоты, полисахариды и другие вещества.

Физические свойства

При нормальной температуре мембраны находятся в жидкокристаллическом состоянии и постоянно колеблется. Их вязкость близка к вязкости растительного масла.

Мембрана способна к восстановлению, прочна, эластична и имеет поры. Толщина мембран 7 - 14 нм.

ТОП-4 статьи которые читают вместе с этой

Для крупных молекул мембрана непроницаема. Мелкие молекулы и ионы могут проходить через поры и саму мембрану под действием разности концентраций по разные стороны мембраны, а также при помощи транспортных белков.

Модель

Обычно строение мембран описывается при помощи жидкостно-мозаичной модели. Мембрана имеет каркас - два ряда липидных молекул, плотно, как кирпичики прилегающих друг к другу.

Рис. 1. Биологическая мембрана типа сэндвича.

С обеих сторон поверхность липидов покрыта белками. Мозаичная картина образуется неравномерно распределёнными на поверхности мембраны молекулами белков.

По степени погруженности в билипидный слой белковые молекулы делят на три группы:

  • трансмембранные;
  • погружённые;
  • поверхностные.

Белки обеспечивают основное свойство мембраны - её избирательную проницаемость для различных веществ.

Типы мембран

Все мембраны клетки по локализации можно разделить на следующие типы:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана, или плазмолемма, является границей клетки. Соединяясь с элементами цитоскелета, она поддерживает её форму и размеры.

Рис. 2. Цитоскелет.

Ядерная мембрана, или кариолемма, является границей ядерного содержимого. Она построена из двух мембран, очень похожих на наружную. Внешняя мембрана ядра связана с мембранами эндоплазматической сети (ЭПС) и, через поры, с внутренней мембраной.

Мембраны ЭПС пронизывают всю цитоплазму, образуя поверхности, на которых идёт синтез различных веществ, в том числе мембранных белков.

Мембраны органоидов

Мембранное строение имеет большинство органоидов.

Из одной мембраны построены стенки:

  • комплекса Гольджи;
  • вакуолей;
  • лизосом.

Пластиды и митохондрии построены из двух слоёв мембран. Их наружная мембрана гладкая, а внутренняя образует множество складок.

Особенностями фотосинтетических мембран хлоропластов являются встроенные молекулы хлорофилла.

Животные клетки имеют на поверхности наружной мембраны углеводный слой, называемый гликокаликсом.

Рис. 3. Гликокаликс.

Наиболее развит гликокаликс в клетках кишечного эпителия, где он создаёт условия для пищеварения и защищает плазмолемму.

Таблица «Строение клеточной мембраны»

Что мы узнали?

Мы рассмотрели строение и функции клеточной мембраны. Мембрана является селективным (избирательным) барьером клетки, ядра и органоидов. Строение клеточной мембраны описывается жидкостно-мозаичной моделью. Согласно этой модели, в двойной слой липидов вязкой консистенции встроены белковые молекулы.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 264.

Мембраны – это чрезвычайно вязкие и вместе с тем пластичные структуры, окружающие все живые клетки. Функции клеточных мембран:

1.Плазматическая мембрана является барьером, с помощью которого поддерживается различный состав вне- и внутриклеточной среды.

2.Мембраны формируют специализированные компартменты внутри клетки, т.е. многочисленные органеллы – митохондрии, лизосомы, комплекс Гольджи, эндоплазматический ретикулум, ядерные мембраны.

3.В мембранах локализованы ферменты, участвующие в преобразовании энергии в таких процессах, как окислительное фосфорилирование и фотосинтез.

Строение и состав мембран

Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы “растворены” в липидном бислое.

Структура липидов мембран

Мембранные липиды − амфифильные молекулы, т.к. в молекуле есть как гидрофильный участок (полярные головки), так и гидрофобный участок, представленный углеводородными радикалами жирных кислот, самопроизвольно формирующие бислой. В мембранах присутствуют липиды трех главных типов – фосфолипиды, гликолипиды и холестерол.

Липидный состав различен. Содержание того или иного липида, по-видимому, определяется разнообразием функций, выполняемых этими липидами в мембранах.

Фосфолипиды. Все фосфолипиды можно разделить на две группы – глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространенные глицерофосфолипиды – фосфатидилхолины и фосфатидилэтаноламины. Сфингофосфолипиды построены на основе аминоспирта сфингозина.

Гликолипиды. В гликолипидах гидрофобная часть представлена спиртом церамидом, а гидрофильная – углеводным остатком. В зависимости от длины и строения углеводной части различают цереброзиды и ганглиозиды. Полярные “головки” гликолипидов находятся на наружной поверхности плазматических мембран.

Холестерол (ХС). ХС присутствует во всех мембранах животных клеток. Его молекула состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи. Единственная гидроксильная группа в 3-положении является “полярной головкой”. Для животной клетки среднее молярное отношение ХС/фосфолипиды равно 0,3-0,4, но в плазматической мембране это отношение гораздо выше (0,8-0,9). Наличие ХС в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и поэтому может влиять на функции мембранных белков.

Свойства мембран :

1. Избирательная проницаемость. Замкнутый бислой обеспечивает одно из основных свойств мембраны: он непроницаем для большинства водорастворимых молекул, поскольку они не растворяются в его гидрофобной сердцевине. Способностью легко проникать в клетку обладают газы, такие как кислород, СО 2 и азот вследствие малого размера молекул и слабого взаимодействия с растворителями. Также без труда проникают через бислой молекулы липидной природы, например, стероидные гормоны.

2.Жидкостность. Для мембран характерна жидкостность (текучесть), способность липидов и белков к перемещениям. Возможны два типа перемещений фосфолипидов – это кувырок (в научной литературе называется “флип-флоп”) и латеральная диффузия. В первом случае противостоящие друг другу в бимолекулярном слое молекулы фосфолипидов переворачиваются (или совершают кувырок) навстречу друг другу и меняются местами в мембране, т.е. наружная становится внутренней и наоборот. Такие перескоки связаны с затратой энергии. Чаще наблюдаются повороты вокруг оси (ротация) и латеральная диффузия – перемещение в пределах слоя параллельно поверхности мембраны. Скорость перемещения молекул зависит от микровязкости мембран, которая, в свою очередь определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот.

3.Асимметрия мембран. Поверхности одной и той же мембраны различаются по составу липидов, белков и углеводов (поперечная асимметрия). Например, в наружном слое преобладают фосфатидилхолины, а во внутреннем – фосфатидилэтаноламины и фосфатидилсерины. Углеводные компоненты гликопротеинов и гликолипидов выходят на наружную поверхность, образуя сплошное поурытие, называемое гликокаликсом. На внутренней поверхности углеводы отсутствуют. Белки – рецепторы гормонов располагаются на наружной поверхности плазматической мембраны, а регулируемые ими ферменты – аденилатциклаза, фосфолипаза С – на внутренней и т.д.

Мембранные белки

Мембранные фосфолипиды играют роль растворителя для мембранных белков, создавая микроокружение, в котором последние могут функционировать. На долю белков приходится от 30 до 70% массы мембран. Число разных белков в мембране варьирует от 6-8 в саркоплазматическом ретикулуме до более чем 100 в плазматической мембране. Это ферменты, транспортные белки, структурные белки, антигены, в том числе антигены основной системы гистосовместимости, рецепторы для различных молекул.

По локализации в мембране белки подразделяются на интегральные (частично или полностью погруженные в мембрану) и периферические (расположенные на ее поверхности). Некоторые интегральные белки пронизывают мембрану один раз (гликофорин), другие прошивают мембрану многократно. Например, фоторецептор сетчатки глаза и β 2 -адренорецептор пересекает бислой 7 раз.

Периферические белки и домены интегральных белков, расположенные на наружной поверхности всех мембран, почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, а также участвуют в узнавании лигандов или адгезии.

Таблица №2

Вопрос 1 (8)

Клеточная мембрана (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определённые условия среды.

Функции клеточной или плазматической мембраны

Мембрана обеспечивает:

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы - гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов - структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

Мембрана клетки - эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидов и белков. От 40 до 90% всех липидов составляют фосфолипиды - фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные церебризидами, сульфатидами, ганглиозидами и холестерином.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимно действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами.

Различают

интегральные белки , проникающие через всю толщу мембраны и


периферические белки , прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и щелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками - АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки - переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки . Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета - спектрином через низкомолекулярный белок анкирин

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков - гликопротеины . Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии;
  • ядро;
  • эндоплазматический ретикулум;
  • комплекс Гольджи;
  • лизосомы;
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.