Где используются магниты. Применение магнитов в разных сферах деятельности современного общества

С тех пор, как вначале 80-х был изобретен неодимовый магнит, применение его распространилось практически на все сферы промышленности - от швейной и пищевой до станкостроительной и космической. Сегодня практически нет отрасли, где бы ни использовались подобные устройства. Более того, в большинстве случаев они практически вытеснили традиционные ферримагниты, существенно уступающие по своим характеристикам.

В чем причина популярности изделий из неодима?

В нескольких словах скажем о том, что такое неодимовый магнит и где применяется

Магнитные свойства неодима были открыты сравнительно недавно, а первая продукция из него появилась лишь в 1982 году. Несмотря на это, она тут же стала набирать популярность. Причина в потрясающих характеристиках сплава, способного притягивать железные предметы в сотни раз больше собственного веса и в десятки раз сильнее, чем ферромагнитные устройства. Благодаря этому, техника, где применяются неодимовые магниты, стала меньше по размерам, но при этом гораздо эффективнее.

В составе сплава, помимо неодима, содержится железо и бор. Чтобы получить нужное изделие, эти вещества в виде порошка не расплавляют, а спекают, что приводит к одному существенному недостатку - хрупкости. Избавиться от сколов и коррозии помогает слой медно-никелевого сплава, благодаря которому, получается продукт готовый для полноценного использования.

Неодимовые магниты - применение в быту

Сегодня каждый может купить бруски, диски или кольца из неодима и использовать их в домашнем хозяйстве. В зависимости от задач, можно выбрать нужный размер, вес и форму изделия, сообразуясь со своим кошельком. Ниже мы приводим несколько вариантов использования магнитных устройств, хотя, в действительности сфера из употребления практически безгранична и ограничивается только фантазией владельца.

Итак, где применяется неодимовый магнит в быту?

Поиск и сбор металлических предметов

Теперь у Вас не возникнет проблем с поиском железных вещей, закатившихся под мебель или упавших в колодец. Просто закрепите, например, магнитный диск на конце палки или привяжите его на шнур и проведите таким нехитрым приспособлением по месту, куда вероятно упал предмет. Буквально через несколько минут потерянное окажется в Ваших руках целым и невредимым.

Применение неодимового магнита поможет также собрать металлическую стружку или рассыпавшиеся саморезы. Для удобства оберните предмет из неодима в ткань, носок или полиэтиленовый пакет. Это поможет с одной стороны защитить рабочую поверхность от налипания железного мусора, а с другой - снять разом все, что прилипло и не отделять каждый шуруп отдельно.


Держатели

Рассказывая о сферах, где применяются неодимовые магниты в быту, упомянем о разного рода фиксаторах. С их помощью Вы можете подвешивать на вертикальных поверхностях любые железосодержащие предметы: кухонные или слесарные принадлежности, садовый и любой другой инструмент. Просто закрепите пластинки из неодима на стенде в определенном порядке и при необходимости прикрепляйте к ним, например ножи или отвертки.

Применение неодимового магнита в быту возможно и для подвешивания не железных предметов: картин, зеркал, полочек, антимоскитных сеток и т.д. Для этого зафиксируйте на вещи магнитную пластину, а на поверхность, куда планируете её крепить небольшой лист железа.

Как мы уже говорили, сплав из неодима достаточно хрупкий, поэтому нежелательно нарушать его целостность сверлением или разрезанием, из-за чего свойства металла существенно пострадают. В качестве подвесов лучше выбирать неодимовые магниты, применение которых не требует дополнительной обработки. Благо интернет-магазины предлагают изделия самых разных конфигураций с отверстиями нужного диаметра, с различными креплениями и вырезами. Поэтому Вы без труда выберите устройство нужной конфигурации. С таким же успехом можно использовать магнитные элементы в качестве защелки на двери, для прикрепления бейджа или создания своими руками магнитика на холодильник. Это далеко не полный список сфер, где применяют неодимовый магнит.

Зажимы

Если требуется склеить две поверхности, а из-за сложности формы использовать тиски не получится, проблему опять помогут решить магнитные детали. Просто разместите между ними склеиваемые предметы, которые за счет притягивающей силы неодима будут плотно прижаты друг к другу.

Используя такого рода зажимы, Вы легко сможете почистить или помыть поверхности, казавшиеся абсолютно недоступными. Где применяют неодимовые магниты конкретно? Для мытья внешних поверхностей стекол балкона, чистки аквариума и других труднодоступных стеклянных емкостей. Поместите магнитный брусок внутрь мочалки, которую зафиксируйте с внешней стороны балкона, удерживая её другим магнитом изнутри. Таким образом, вы можете направлять внешнюю мочалку, куда пожелаете и идеально очистить стекло.

Авто

От стружки и другого металлического мусора в машинном масле можно избавиться с помощью применения неодимового магнита, видео об этом есть в сети. Закрепите магнитное устройство на сливной пробке картера, неодим притянет микрочастицы железа, и они не попадут в рабочие механизмы авто.

С помощью небольшой пластинки из неодима, можно также закрепить какие-либо предметы на кузове авто, а с помощью больших магнитных дисков или брусков можно даже выравнивать небольшие вмятины.

Неодимовый магнит - применение в быту. Неисследованные моменты

Многие ученые считают, что электромагнитные волны оказывают благотворное воздействие на живые организмы. В связи с этим появилось множество устройств, которые, как считается, способствуют росту растений и оздоравливают организм. Многие огородники втыкают магнитные прутки рядом с посаженными растениями, а животноводы помещают предметы в клетках с домашними животными. Кроме того, сейчас популярны различные магнитные браслеты, отделка неодимом одежды, очистка воды и многое другое.

Безусловно, в статье мы затронули лишь малую толику сфер, где неодимовые магниты нашли применение, видео и статьи с другими способами использования этих изделий вы можете найти в сети.

Одно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён. До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка. Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля.

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

Как увидеть магнитное поле

Чтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку.

Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы.

Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении.

Виды магнитов

Постоянные магниты разделяют на 2 вида:

  • естественные;
  • искусственные.

Естественные

В природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл». Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось. Это была разработка и добыча естественного магнетита.

Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.

Искусственные

Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.

В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий.

Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

  • «Nd» – ниодия,
  • «Fe» – железа,
  • «B» – бора.

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье.

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Радиотехника

ПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

Видео

В самом начале работы полезно будет дать несколько определений и пояснений.

Если, в каком то месте, на движущиеся тела, обладающие зарядом, действует сила, которая не действует на неподвижные или лишенные заряда тела, то говорят, что в этом месте присутствует магнитное поле – одна из форм более общего электромагнитного поля .

Есть тела, способные создавать вокруг себя магнитное поле (и на такое тело тоже действует сила магнитного поля), про них говорят, что эти тела намагничены и обладают магнитным моментом, который и определяет свойство тела создавать магнитное поле. Такие тела называют магнитами .

Следует отметить, что разные материалы по разному реагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутри себя – парамагнетики и усиливающие внешнее поле внутри себя – диамагнетики .

Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо, кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют – ферромагнетики .

Есть среди ферромагнетиков материалы которые после воздействия на них достаточно сильного внешнего магнитного поля сами становятся магнитами – это магнитотвердые материалы.

Есть материалы концентрирующие в себе внешнее магнитное поле и, пока оно действует, ведут себя как магниты; но если внешнее поле исчезает они не становятся магнитами – это магнитомягкие материалы

ВВЕДЕНИЕ.

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов – всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Магнит известен человеку с незапамятных времён. До нас дошли упоминания

о магнитах и их свойствах в трудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 до н.э.). Само слово «магнит» возникло в связи с тем, что природные магниты были обнаружены греками в Магнесии (Фессалия).

Естественные (или природные) магниты встречаются в природе в виде залежей магнитных руд. В Тартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков . Так называемые «порошковые» магниты (из железа, кобальта и некоторых других добавок) могут удержать груз более чем 5000 раз превышающий их собственную массу.

С уществуют искусственные магниты двух разных видов:

Одни – так называемые постоянные магниты , изготовляемые из « магнитно-твердых » материалов. Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из « магнитно-мягкого » железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.

В 1600 году в Лондоне вышла книга королевского врача В. Гильберта “О магните, магнитных телах и большом магните - Земле”. Это сочинение явилось первой известной нам попыткой исследования магнитных явлений с позиций науки. В этом труде собраны имевшиеся тогда сведения об электричестве и магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чем сталкивается человек, он прежде всего стремится извлечь практическую пользу. Не миновал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используются магниты человеком не для войны, а в мирных целях, в том числе применение магнитов в биологии, медицине, в быту.

ИСПОЛЬЗОВАНИЕ МАГНИТОВ.

КОМПАС, прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относится сообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природных магнитов и использовании их в навигации. Если

длинная игла из природного магнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальной плоскости, то она всегда обращена одним концом к северу, а другим – к югу. Пометив указывающий на север конец, можно пользоваться таким компасом для определения направлений.

Магнитные эффекты концентрировались у концов такой иглы, и поэтому их назвали полюсами (соответственно северным и южным).

Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т.д.

В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник с током воздействует на магнитную стрелку, поворачивая ее. Буквально неделей позже Ампер показал, что два параллельных проводника с током одного направления притягиваются друг к другу. Позднее он высказал предположение, что все магнитные явления обусловлены токами, причем магнитные свойства постоянных магнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Это предположение полностью соответствует современным представлениям.

Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю

Индукционные счетчики электроэнергии . Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

Замок - механическое, электрическое или электронное устройство, ограничивающее возможность несанкционированного пользования чем-либо. Замок может приводиться в действие устройством (ключом), имеющимся в распоряжении определенного лица, информацией (цифровым или буквенным кодом), вводимой этим лицом, или какой либо индивидуальной характеристикой (например, рисунком сетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узла или две детали в одном устройстве. Чаще всего замки бывают механическими, но все более широкое применение находят электромагнитные замки.

Магнитные замки . В цилиндровых замках некоторых моделей применяются магнитные элементы. Замок и ключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочную скважину вставляется правильный ключ, он притягивает и устанавливает в нужное положение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза.

Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов.

Спектр выпускаемых приборов широк и разнообразен: приборы щитовые постоянного и переменного тока (магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитной систем), комбинированные приборы ампервольтомметры, для диагностирования и регулировки электрооборудования автомашин, измерения температуры плоских поверхностей, приборы для оснащения школьных учебных кабинетов, тестеры и измерители всевозможных электрических параметров

Производство абразивов - мелких, твердых, острых частиц, используемых в свободном или связанном виде для механической обработки (в т.ч. для придания формы, обдирки, шлифования, полирования) разнообразных материалов и изделий из них (от больших стальных плит до листов фанеры, оптических стекол и компьютерных микросхем). Абразивы бывают естественные или искусственные. Действие абразивов сводится к удалению части материала с обрабатываемой поверхности. В процессе производства искусственных абразивов ферросилиций, присутствующий в смеси, оседает на дно печи, но небольшие его количества внедряются в абразив и позже удаляются магнитом.

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнетох и мия (магнитохимия) - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

Магнитная дефектоскопия , метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

. Техника сверхвысокочастотного диапазона

Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100 ¸ 300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.

Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов – магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора

В магнетроне предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц , установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинской терапии и диагностике у скорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке – сотни болезней.

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов. ГРЕКОВ, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно – сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков – электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10 -6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов.

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, который можно сделать из выше сказанного – нет области прикладной деятельности человека, где бы не применялись магниты.

Использованная литература:

  1. БСЭ, второе издание, Москва, 1957 г.
  2. Холодов Ю.А. “Человек в магнитной паутине”, “Знание”, Москва, 1972 г.
  3. Материалы из интернет - энциклопедии
  4. Путилов К.А. «Курс физики» , «Физматгиз», Москва, 1964г.

В самом начале работы полезно будет дать несколько определений и пояснений.

Если, в каком то месте, на движущиеся тела, обладающие зарядом, действует сила, которая не действует на неподвижные или лишенные заряда тела, то говорят, что в этом месте присутствует магнитное поле одна из форм более общего электромагнитного поля .

Есть тела, способные создавать вокруг себя магнитное поле (и на такое тело тоже действует сила магнитного поля), про них говорят, что эти тела намагничены и обладают магнитным моментом, который и определяет свойство тела создавать магнитное поле. Такие тела называют магнитами .

Следует отметить, что разные материалы по разному реагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутри себяпарамагнетики и усиливающие внешнее поле внутри себядиамагнетики .

Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо, кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют ферромагнетики .

Есть среди ферромагнетиков материалы которые после воздействия на них достаточно сильного внешнего магнитного поля сами становятся магнитами это магнитотвердые материалы.

Есть материалы концентрирующие в себе внешнее магнитное поле и, пока оно действует, ведут себя как магниты; но если внешнее поле исчезает они не становятся магнитами это магнитомягкие материалы

ВВЕДЕНИЕ.

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце жёлтый плазменный шар магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Магнит известен человеку с незапамятных времён. До нас дошли упоминания

о магнитах и их свойствах в трудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427347 до н.э.). Само слово магнит возникло в связи с тем, что природные магниты были обнаружены греками в Магнесии (Фессалия).

Естественные (или природные) магниты встречаются в природе в виде залежей магнитных руд. В Тартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков . Так называемые порошковые магниты (из железа, кобальта и некоторых других добавок) могут удержать груз более чем 5000 раз превышающий их собственную массу.

Существуют искусственные магниты двух разных видов:

Одни так называемые постоянные магниты , изготовляемые из магнитно-твердых материалов. Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из магнитно-мягкого железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.

В 1600 году в Лондоне вышла книга королевского врача В. Гильберта “О магните, магнитных телах и большом магните - Земле”. Это сочинение явилось первой известной нам попыткой исследования магнитных явлений с позиций науки. В этом труде собраны имевшиеся тогда сведения об электричестве и магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чем сталкивается человек, он прежде всего стремится извлечь практическую пользу. Не миновал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используются магниты человеком не для войны, а в мирных целях, в том числе применение магнитов в биологии, медицине, в быту.

КОМПАС, прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относится сообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природных магнитов и использовании их в навигации. Если

КОМПАС  Ко́ мпас - устройство, облегчающее ориентирование на местности. Предположительно, компас был изобретён в Китае. В Европе изобретение компаса относят к XII-XIII вв., однако устройство его оставалось очень простым - магнитная стрелка, укрепленная на пробке и опущенная в сосуд с водой. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные - отталкиваются.

  • 3. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА
  • 4. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА  Наушники  Стереоколонки  Телефонная трубка  Электрозвонок  Держатель по периметру дверцы холодильника  Записывающие и воспроизводящие головки аудио- и видеоаппаратуры  Записывающие и воспроизводящие головки дисковода и жесткого диска компьютера  Магнитная полоска на банковской карте  Управляющие и размагничивающие магнитные системы в телевизоре  Вентиляторы  Трансформаторы  Магнитные замки  Игрушки  Магнитные носители информации
  • 5. МАГНИТНЫЕ НОСИТЕЛЬ ИНФОРМАЦИИ  · Жесткие диски ПК (винчестеры) · Видеокассеты (любых форматов, в том числе Betacam) · Аудиокассеты · Стримерные кассеты · Дискеты, ZIP-диски
  • 6. МАГНИТНЫЕ ЗАМКИ.  Магнитный замок – это особое запорное устройство, принцип работы которого базируется на магнитном взаимодействии. Магнитный замок может функционировать как с дополнительным питанием, так и без него. Магнитный замок, работающий без дополнительного питания - это упрощенная конструкция, обладающая меньшей рабочей силой. Подобные магнитные замки используются для закрывания дверей шкафов, на женских сумочках, одежде и пр. Магнитный замок, работающий под подачей электрического тока получил широкое распространение в качестве запирающего и отпирающего оборудования дверей в помещениях, с ограниченным доступом и контролем посещений. Основное техническое преимущество магнитного замка заключается в том, что конструкция не предусматривает наличия движущихся механизмов и деталей. Это является одним из факторов, обеспечивающих высокую надежность и долговечность работы. При всем при этом, магнитный замок не слишком трудоемок в монтаже и прост в эксплуатации. Замкам другого типа магнитный замок проигрывает только в одном – он абсолютно недееспособен при отсутствии электропитания.
  • 7. ИГРУШКИ 
  • 8. НАУШНИКИ  Наушники - устройство для персонального прослушивания музыки, речи или иных звуковых сигналов.
  • 9. КРЕДИТНЫЕ КАРТОЧКИ  Креди́ тная ка́рта (разг. креди́ тка) - банковская платёжная карта, предназначенная для совершения операций, расчёты по которым осуществляются исключительно за счёт денежных средств.
  • 10. ТЕЛЕФОННАЯ ТРУБКА
  • 11. СТЕРЕОКОЛОНКИ
  • 12. ЭЛЕКТРОЗВОНОК
  • 13. ДЕРЖАТЕЛЬ ПО ПЕРИМЕТРУ ДВЕРЦЫ ХОЛОДИЛЬНИКА
  • 14. ТРАНСФОРМАТОРЫ
  • 15. ВЕНТИЛЯТОРЫ
  • 16. УПРАВЛЯЮЩИЕ И РАЗМАГНИЧИВАЮЩИЕ МАГНИТНЫЕ СИСТЕМЫ В ТЕЛЕВИЗОРЕ
  • 17. СВЕРХВЫСОКО ЧАСТОТНЫЙ ДИАПАЗОН (СВЧ)  Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100ч300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Радиоволны СВЧ-диапазона широко применяются в технике связи. СВЧ- излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности.
  • 18. В МЕДИЦИНЕ  Кардиостимуляторы  Томографы  Тонометры
  • 19. КАРДИОСТИМУЛЯТОРЫ
  • 20. ТОМОГРАФЫ  Магни́ тно-резона́нсный томо́ граф (МРТ), ядерно магнитно-резонансный томограф (ЯМРТ) или магнитно-резонансная томография(МРТ), является основным инструментом медицинской техники для создания изображений, используемых в радиологии для подробной визуализации внутренних структур и органов человека. Томограф обеспечивает хороший контраст между различными мягкими тканями тела, что делает его особенно полезным при исследованиях мозга, мышц, сердца и диагностики рака по сравнению с другими медицинскими методами визуализации