Зависимость скорости химической реакции. Скорость химической реакции: условия, примеры. Факторы, влияющие на скорость химической реакции

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Химические методы

Физические методы

Методы измерения скорости реакции

В приведенном выше примере скорость реакции между карбонатом кальция и кислотой измеряли путем изучения зависимости объема выделившегося газа от времени. Опытные данные о скоростях реакций можно получать измерением других величин.

Если в ходе реакции изменяется общее количество газообразных веществ, то за ее протеканием можно наблюдать, измеряя давление газа при постоянном объеме. В тех случаях, когда одно из исходных веществ или один из продуктов реакции окрашены, за ходом реакции можно следить, наблюдая изменение окраски раствора. Другим оптическим методом является измерение вращения плоскости поляризации света (если исходные вещества и продукты реакции обладают различной вращающей способностью).

Некоторые реакции сопровождаются изменением числа ионов в растворе. В таких случаях скорость реакции можно изучать путем измерения электрической проводимости раствора. В следующей главе будут рассмотрены некоторые другие электрохимические методы, которые могут быть использованы для измерения скоростей реакций.

За ходом реакции можно следить, измеряя во времени концентрацию одного из участников реакции с помощью разнообразных методов химического анализа. Реакцию проводят в термостатированном сосуде. Через определенные промежутки времени из сосуда отбирают пробу раствора (или газа) и определяют концентрацию одного из компонентов. Для получения надежных результатов важно, чтобы в пробе, отобранной для анализа, реакция не происходила. Это достигается путем химического связывания одного из реагентов, резким охлаждением или разбавлением раствора.

Экспериментальные исследования показывают, что скорость реакции зависит от нескольких факторов. Рассмотрим влияние этих факторов вначале на качественном уровне.

1.Природа реагирующих веществ. Из лабораторной практики мы знаем, что нейтрализация кислоты основанием

Н + + ОН – ® Н 2 О

взаимодействие солей с образованием малорастворимого соединения

Ag + + Cl – ® AgCl

и другие реакции в растворах электролитов происходят очень быстро. Время, необходимое для завершения таких реакций, измеряется в миллисекундах и даже в микросекундах. Это вполне понятно, т.к. сущность таких реакций состоит в сближении и соединении заряженных частиц с зарядами противоположного знака.

В противоположность ионным реакциям взаимодействие между ковалентно связанными молекулами обычно протекает гораздо медленнее. Ведь в ходе реакции между такими частицами должен произойти разрыв связей в молекулах исходных веществ. Для этого сталкивающиеся молекулы должны обладать определенным запасом энергии. Кроме того,если молекулы достаточно сложны, для того, чтобы произошла между ними реакция, они должны быть определенным образом ориентированы в пространстве.

2. Концентрация реагирующих веществ . Скорость химической реакции, при прочих равных условиях, зависит от числа столкновений реагирующих частиц в единицу времени. Вероятность столкновений зависит от количества частиц в единице объема, т.е. от концентрации. Поэтому скорость реакции увеличивается с повышением концентрации.

3. Физическое состояние веществ . В гомогенных системах скорость реакции зависит от числа столкновений частиц в объеме раствора (или газа). В гетерогенных системах химическое взаимодействие происходит на поверхности раздела фаз . Увеличение площади поверхности твердого вещества при его измельчении облегчает доступ реагирующих частиц к частицам твердого вещества, что приводит к существенному ускорению реакции.

4. Температура оказывает существенное влияние на скорость разнообразных химических и биологических процессов. При увеличении температуры повышается кинетическая энергия частиц, а, следовательно, увеличивается доля частиц, энергия которых достаточна для химического взаимодействия.

5. Стерический фактор характеризует необходимость взаимной ориентации реагирующих частиц. Чем сложнее молекулы, тем меньше вероятность их должной ориентации, тем меньше эффективность столкновений.

6. Наличие катализаторов . Катализаторами называются вещества, в присутствии которых изменяется скорость химической реакции. Вводимые в реакционную систему в небольших количествах и остающиеся после реакции неизменившимися, они способны чрезвычайно менять скорость процесса.

Основные факторы, от которых зависит скорость реакции, будут подробнее рассмотрены ниже.

Химические реакции протекают с различными скоростями. Некоторые из них полностью заканчиваются за малые доли секунды, другие осуществляются за минуты, часы, дни; известны реакции, требующие для своего протекания несколько лет. Кроме того, одна и та же реакции может в одних условиях, например, при повышенных температурах, протекать быстро, а в других, — например, при охлаждении, — медленно; при этом различие в скорости одной и той же реакции может быть очень большим.

При рассмотрении вопроса о скорости химической реакции необходимо различать реакции, протекающие в гомогенной системе (гомогенные реакции), и реакции, протекающие в гетерогенной системе (гетерогенные реакции).

ОПРЕДЕЛЕНИЕ

Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда - вещества, окружающие систему.

Различают гомогенные и гетерогенные системе. Гомогенной называется система, состоящая из одной фазы, гетерогенной - система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других её частей поверхностью раздела, при переходе через которую свойства изменяются скачком.

Примером гомогенной системы может служить любая газовая смесь 9все газы при не очень высоких давлениях неограниченно растворяются друг в друге) или раствор нескольких веществ в одном растворителе.

В качестве примеров гетерогенных систем можно привести следующие системы: вода со льдом, насыщенный раствор с осадком, уголь и сера в атмосфере воздуха.

Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы. Если реакция протекает между веществами, образующими гетерогенную систему то она может идти только на поверхности раздела фаз, образующих систему. В связи с этим скорость гомогенной реакции и скорость гетерогенной реакции определяются различно.

ОПРЕДЕЛЕНИЕ

Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.

Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы.

Оба эти определения можно записать в математической форме. Введем обозначения: υ homogen - скорость реакции в гомогенной системе; υ h etero gen - скорость реакции в гетерогенной системе;n- число молей какого-либо из получающихся при реакции веществ; V- объем системы; t-время; S - площадь поверхности фазы, на которой протекает реакция; Δ - знак приращения (Δn = n 2 -n 1 ; Δt = t 2 -t 1). Тогда

υ homogen = Δn / (V× Δt);

υ heterogen = Δn / (S× Δt).

Первое из этих уравнений можно упростить. Отношение количества вещества (n) к объему (V) системы представляет собою молярную концентрацию (с) вещества: c=n/V, откуда Δc=Δn/V и окончательно:

υ homogen = Δc / Δt.

Примеры решения задач

ПРИМЕР 1

Задание Составьте формулы двух оксидов железа, если массовые доли железа в них 77,8% и 70,0%.
Решение

Найдем массовую долю в каждом из оксидов меди:

ω 1 (О) = 100% — ω 1 (Fe) = 100% — 77,8% = 22,2%;

ω 2 (О) = 100% — ω 2 (Fe) = 100% — 70,0% = 30,0%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (железо) и «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева округлим до целых чисел):

x:y = ω 1 (Fe)/Ar(Fe) : ω 1 (O)/Ar(O);

x:y = 77,8/56: 22,2/16;

x:y = 1,39: 1,39 = 1: 1.

Значит формула первого оксида железа будет иметь вид FeO.

x:y = ω 2 (Fe)/Ar(Fe) : ω 2 (O)/Ar(O);

x:y = 70/56: 30/16;

x:y = 1,25: 1,875 = 1: 1,5 = 2: 3.

Значит формула второго оксида железа будет иметь вид Fe 2 O 3 .

Ответ FeO, Fe 2 O 3

ПРИМЕР 2

Задание Составьте формулу соединения водорода, йода и кислорода, если массовые доли элементов в нём: ω(H) = 2,2%, ω(I) = 55,7%, ω(O) = 42,1%.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (водород), «у» (йод), «z» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(H)/Ar(H) : ω(I)/Ar(I) : ω(O)/Ar(O);

x:y:z= 2,2/1: 55,7/127: 42,1/16;

x:y:z= 2,2: 0,44: 2,63 = 5: 1: 6.

Значит формула соединения водорода, йода и кислорода будет иметь вид H 5 IO 6 .

Ответ H 5 IO 6

Скорость химической реакции зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализаторов. Рассмотрим эти факторы.

1). Природа реагирующих веществ . Если идёт взаимодействие между веществами с ионной связью, то реакция протекает быстрее, чем между веществами с ковалентной связью.

2.) Концентрация реагирующих веществ . Чтобы прошла химическая реакция, необходимо столкновение молекул реагирующих веществ. То есть молекулы должны настолько близко подойти друг к другу, чтобы атомы одной частицы испытывали на себе действие электрических полей другой. Только в этом случае будут возможны переходы электронов и соответствующие перегруппировки атомов, в результате которых образуются молекулы новых веществ. Таким образом, скорость химических реакций пропорциональна числу столкновений, которое происходит между молекулами, а число столкновений, в свою очередь, пропорционально концентрации реагирующих веществ. На основании экспериментального материала норвежские учёные Гульдберг и Вааге и независимо от них русский учёный Бекетов в 1867 году сформулировали основной закон химической кинетикизакон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов. Для общего случая:

закон действующих масс имеет вид:

Запись закона действующих масс для данной реакции называют основным кинетическим уравнением реакции . В основном кинетическом уравнении k – константа скорости реакции, которая зависит от природы реагирующих веществ и температуры.

Большинство химических реакций является обратимыми. В ходе таких реакций продукты их по мере накопления реагируют друг с другом с образованием исходных веществ:

Скорость прямой реакции:

Скорость обратной реакции:

В момент равновесия:

Отсюда закон действующих масс в состоянии равновесия примет вид:

,

где K – константа равновесия реакции.

3) Влияние температуры на скорость реакции . Скорость химических реакций, как правило, при превышении температуры возрастает. Рассмотрим это на примере взаимодействия водорода с кислородом.

2Н 2 + О 2 = 2Н 2 О

При 20 0 С скорость реакции практически равна нулю и понадобилось бы 54 млрд.лет, чтобы взаимодействие прошло на 15%. При 500 0 С для образования воды потребуется 50 минут, а при 700 0 С реакция протекает мгновенно.

Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа : при увеличении температуры на 10 о скорость реакции увеличивается в 2 – 4 раза. Правило Вант-Гоффа записывается:


4) Влияние катализаторов . Скорость химических реакций можно регулировать с помощью катализаторов – веществ, изменяющих скорость реакции и остающихся после реакции в неизменном количестве. Изменение скорости реакции в присутствии катализатора называется катализом. Различают положительный (скорость реакции увеличивается) и отрицательный (скорость реакции уменьшается) катализ. Иногда катализатор образуется в ходе реакции, такие процессы называют автокаталитическими. Различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе. Например:

При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах. Например:

Гетерогенный катализ связан с ферментативными процессами. Все химические процессы, протекающие в живых организмах, катализируются ферментами, которые представляют собой белки с определёнными специализированными функциями. В растворах, в которых идут ферментативные процессы, нет типичной гетерогенной среды, в связи с отсутствием чётко выраженной поверхности раздела фаз. Такие процессы относят к микрогетерогенному катализу.

Физическая химия: конспект лекций Березовчук А В

2. Факторы, влияющие на скорость химической реакции

Для гомогенных, гетерогенных реакций:

1) концентрация реагирующих веществ;

2) температура;

3) катализатор;

4) ингибитор.

Только для гетерогенных:

1) скорость подвода реагирующих веществ к поверхности раздела фаз;

2) площадь поверхности.

Главный фактор – природа реагирующих веществ – характер связи между атомами в молекулах реагентов.

NO 2 – оксид азота (IV) – лисий хвост, СО – угарный газ, монооксид углерода.

Если их окислить кислородом, то в первом случае реакция пойдет мгновенно, стоит приоткрыть пробку сосуда, во втором случае реакция растянута во времени.

Концентрация реагирующих веществ будет рассмотрена ниже.

Голубая опалесценция свидетельствует о моменте выпадения серы, чем выше концентрация, тем скорость выше.

Рис. 10

Чем больше концентрации Na 2 S 2 O 3 , тем меньше времени идет реакция. На графике (рис. 10) изображена прямо пропорциональная зависимость. Количественная зависимость скорости реакции от концент-рации реагирующих веществ выражается ЗДМ (законом действующих масс), который гласит: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Итак, основным законом кинетики является установленный опытным путем закон: скорость реакции пропорциональна концентрации реагирующих веществ, пример: (т.е. для реакции)

Для этой реакции Н 2 + J 2 = 2НJ – скорость можно выразить через изменение концентрации любого из веществ. Если реакция протекает слева направо, то концентрация Н 2 и J 2 будет уменьшаться, концентрация НJ – увеличиваться по ходу реакции. Для мгновенной скорости реакций можно записать выражение:

квадратными скобками обозначается концентрация.

Физический смысл k– молекулы находятся в непрерывном движении, сталкиваются, разлетаются, ударяются о стенки сосуда. Для того, чтобы произошла химическая реакция образования НJ, молекулам Н 2 и J 2 надо столкнуться. Число же таких столкновений будет тем больше, чем больше молекул H 2 и J 2 содержится в объеме, т. е. тем больше будут величины [Н 2 ] и . Но молекулы движутся с разными скоростями, и суммарная кинетическая энергия двух сталкивающихся молекул будет различной. Если столкнутся самые быстрые молекулы Н 2 и J 2 , энергия их может быть такой большой, что молекулы разобьются на атомы йода и водорода, разлетающиеся и взаимодействующие затем с другими молекулами Н 2 + J 2 ? 2H+2J, далее будет H + J 2 ? HJ + J. Если энергия сталкивающихся молекул меньше, но достаточно велика для ослабления связей H – H и J – J, произойдет реакция образования йодоводорода:

У большинства же сталкивающихся молекул энергия меньше необходимой для ослабления связей в Н 2 и J 2 . Такие молекулы «тихо» столкнутся и также «тихо» разойдутся, оставшись тем, чем они были, Н 2 и J 2 . Таким образом, не все, а лишь часть столкновений приводит к химической реакции. Коэффициент пропорциональности (k) показывает число результативных, приводящих к реакции соударений при концентрациях [Н 2 ] = = 1моль. Величина k– const скорости . Как же скорость может быть постоянной? Да, скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка. Но молекулы движутся хаотически, тогда как же может быть скорость – const? Но постоянная скорость может быть только при постоянной температуре. С ростом температуры увеличивается доля быстрых молекул, столкновения которых приводят к реакции, т. е. увеличивается константа скорости. Но увеличение константы скорости не безгранично. При какой-то температуре энергия молекул станет столь большой, что практически все соударения реагентов будут результативными. При столкновении двух быстрых молекул будет происходить обратная реакция.

Настанет такой момент, когда скорости образования 2НJ из Н 2 и J 2 и разложения будут равны, но это уже химическое равновесие. Зависимость скорости реакции от концентрации реагирующих веществ можно проследить, пользуясь традиционной реакцией взаимодействия раствора тиосульфата натрия с раствором серной кислоты.

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 , (1)

H 2 S 2 O 3 = S?+H 2 O+SO 2 ?. (2)

Реакция (1) протекает практически мгновенно. Скорость реакции (2) зависит при постоянной температуре от концентрации реагирующего вещества H 2 S 2 O 3 . Именно эту реакцию мы наблюдали – в этом случае скорость измеряется временем от начала сливания растворов до появления опалесценции. В статье Л. М. Кузнецовой описана реакция взаимодействия тиосульфата натрия с соляной кислотой. Она пишет, что при сливании растворов происходит опалесценция (помутнение). Но данное утверждение Л. М. Кузнецовой ошибочно так как опалесценция и помутнение – это разные вещи. Опалесценция (от опал и латинского escentia – суффикс, означающий слабое действие) – рассеяние света мутными средами, обусловленное их оптической неоднородностью. Рассеяние света – отклонение световых лучей, распространяющихся в среде во все стороны от первоначального направления. Коллоидные частицы способны рассеивать свет (эффект Тиндаля – Фарадея) – этим объясняется опалесценция, легкая мутноватость коллоидного раствора. При проведении этого опыта надо учитывать голубую опалесценцию, а затем коагуляцию коллоидной суспензии серы. Одинаковую плотность суспензии отмечают по видимому исчезновению какого-либо рисунка (например, сетки на дне стаканчика), наблюдаемого сверху через слой раствора. Время отсчитывают по секундомеру с момента сливания.

Растворы Na 2 S 2 O 3 x 5H 2 O и H 2 SO 4 .

Первый готовят путем растворения 7,5 г соли в 100 мл H 2 O, что соответствует 0,3 М концентрации. Для приготовления раствора H 2 SO 4 той же концентрации отмерить надо 1,8 мл H 2 SO 4 (к), ? = = 1,84 г/см 3 и растворить ее в 120 мл H 2 O. Приготовленный раствор Na 2 S 2 O 3 разлить в три стакана: в первый – 60 мл, во второй – 30 мл, в третий – 10 мл. Во второй стакан добавить 30 мл H 2 O дистиллированной, а в третий – 50 мл. Таким образом, во всех трех стаканах окажется по 60 мл жидкости, но в первом концентрация соли условно = 1, во втором – Ѕ, а в третьем – 1/6. После того, как будут подготовлены растворы, в первый стакан с раствором соли прилейте 60 мл раствора H 2 SO 4 и включите секундомер, и т. д. Учитывая, что скорость реакции падает с разбавлением раствора Na 2 S 2 O 3 , ее можно определить как величину, обратно пропорциональную времени v = 1/? и построить график, отложив на оси абсцисс концентрацию, а на оси ординат – скорость реакции. Из этого вывод – скорость реакции зависит от концентрации веществ. Полученные данные занесены в таблицу 3. Можно этот опыт выполнить с помощью бюреток, но это требует от выполняющего большой практики, потому что график бывает неправильным.

Таблица 3

Скорость и время реакции

Подтверждается закон Гульдберга-Вааге – профессора химии Гульдерга и молодого ученого Вааге).

Рассмотрим следующий фактор – температуру.

При увеличении температуры скорость большинства химических реакций повышается. Эта зависимость описана правилом Вант-Гоффа: «При повышении температуры на каждые 10 °C скорость химических реакций увеличивается в 2 – 4 раза».

где ? – температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 °C;

v 1 – скорость реакции при температуре t 1 ;

v 2 – скорость реакции при температуре t 2 .

Например, реакция при 50 °С протекает за две минуты, за сколько времени закончится процесс при 70 °С, если температурный коэффициент ? = 2?

t 1 = 120 с = 2 мин; t 1 = 50 °С; t 2 = 70 °С.

Даже небольшое повышение температуры вызывает резкое увеличение скорости реакции активных соударений молекулы. Согласно теории активации, в процессе участвуют только те молекулы, энергия которых больше средней энергии молекул на определенную величину. Эта избыточная энергия – энергия активации. Физический смысл ее – это та энергия, которая необходима для активного столкновения молекул (перестройки орбиталей). Число активных частиц, а следовательно, скорость реакции возрастает с температурой по экспоненциальному закону, согласно уравнению Аррениуса, отражающему зависимость константы скорости от температуры

где А – коэффициент пропорциональности Аррениуса;

k– постоянная Больцмана;

Е А – энергия активации;

R – газовая постоянная;

Т– температура.

Катализатор – вещество, ускоряющее скорость реакции, которое само при этом не расходуется.

Катализ – явление изменения скорости реакции в присутствии катализатора. Различают гомогенный и гетерогенный катализ. Гомогенный – если реагенты и катализатор находятся в одном агрегатном состоянии. Гетерогенный – если реагенты и катализатор в различных агрегатных состояниях. Про катализ см. отдельно (дальше).

Ингибитор – вещество, замедляющее скорость реакции.

Следующий фактор – площадь поверхности. Чем больше поверхность реагирующего вещества, тем больше скорость. Рассмотрим на примере влияние степени дисперсности на скорость реакции.

CaCO 3 – мрамор. Плиточный мрамор опустим в соляную кислоту HCl, подождем пять минут, он растворится полностью.

Порошкообразный мрамор – с ним проделаем ту же процедуру, он растворился через тридцать секунд.

Уравнение обоих процессов одинаково.

CaCO 3 (тв) + HCl(г) = CaCl 2 (тв) + H 2 O(ж) + CO 2 (г) ?.

Итак, при добавлении порошкообразного мрамора время меньше, чем при добавлении плиточного мрамора, при одинаковой массе.

С увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Уравнение изотермы химической реакции Если реакция протекает обратимо, то?G= 0.Если реакция протекает необратимо, то?G? 0 и можно рассчитать изменение?G. где? – пробег реакции – величина, которая показывает, сколько молей изменилось в ходе реакции. I сп – характеризует

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

3. Уравнения изохоры, изобары химической реакции Зависимость К от температуры Уравнение изобары: Уравнение изохоры: По ним судят о направлении протекания

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

1. Понятие химической кинетики Кинетика – наука о скоростях химических реакций.Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице поверхности

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

8. Факторы, влияющие на перенапряжение водорода. Перенапряжение кислорода Факторы, влияющие на?Н2:1) ?тока (плотность тока). Зависимость от плотности тока описывается уравнением Тафеля;2) природа материала катода – ряд по возрастанию?, ?– перенапряжение.В уравнении Тафеля

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги Что такое теория относительности автора Ландау Лев Давидович

Ядерные реакции и электрический заряд Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома,

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

ЯДЕРНЫЕ РЕАКЦИИ МЕТОДЫ БОМБАРДИРОВКИ ЯДЕР1.40. Кокрофт и Уолтон получали протоны с достаточно большой энергией путем ионизации газообразного водорода и последующего ускорения ионов высоковольтной установкой с трансформатором и выпрямителем. Подобный же метод можно

Из книги 50 лет советской физики автора Лешковцев Владимир Алексеевич

ПРОБЛЕМА ЦЕПНОЙ РЕАКЦИИ 2.3. Принцип действия атомных бомб или силовой установки, использующей деление урана, достаточно прост. Если один нейтрон вызывает деление, которое приводит к освобождению нескольких новых нейтронов, то число делений может чрезвычайно быстро

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ПРОДУКТЫ РЕАКЦИИ И ПРОБЛЕМА РАЗДЕЛЕНИЯ 8.16. В хэнфордской установке процесс производства плутония разделяется на две главных части: собственно получение его в котле и выделение его из блоков урана, в которых он образуется. Переходим к рассмотрению второй части процессу

Из книги На кого упало яблоко автора Кессельман Владимир Самуилович

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАЗДЕЛЕНИЕ ИЗОТОПОВ 9.2. По определению, изотопы элемента отличаются своими массами, но не химическими свойствами. Точнее говоря, хотя массы ядер изотопов и их строение различны, заряды ядер одинаковы, и поэтому наружные электронные оболочки

Из книги автора

Осуществление цепной реакции деления ядер Теперь встал со всей силой вопрос о цепной реакции деления и о возможности получения разрушительной взрывной энергии деления. Этот вопрос роковым образом переплелся с мировой войной, развязанной фашистской Германией 1 сентября

Из книги автора

И скорость относительна! Из принципа относительности движения следует, что говорить о прямолинейном и равномерном движении тела с некоторой скоростью, не указывая, относительно какой из покоящихся лабораторий измерена скорость, имеет столь же мало смысла, как говорить

Из книги автора

Скорость звука Случалось ли вам наблюдать издали за дровосеком, рубящим дерево? Или, быть может, вы следили за тем, как вдали работает плотник, вколачивая гвозди? Вы могли заметить при этом очень странную вещь: удар раздается не тогда, когда топор врезается в дерево или

Из книги автора

УПРАВЛЯЕМЫЕ ТЕРМОЯДЕРНЫЕ РЕАКЦИИ Неуправляемые термоядерные реакции происходят при взрывах водородных бомб. Они приводят к высвобождению громадного количества ядерной энергии, сопровождающемуся крайне разрушительным взрывом. Теперь задача ученых - найти пути

Из книги автора

Из книги автора

В лабиринтах реакции деления В 1938 году немецкие ученые Отто Ган и Фриц Штрассман (1902–1980) сделали удивительное открытие. Они обнаружили, что при бомбардировке урана нейтронами иногда возникают ядра, примерно вдвое более легкие, чем исходное ядро урана. Дальнейшие