Зеленый пигмент растения. Хлорофилл — зеленый пигмент растений. Олимпиадные задания по химии Хлорофилл является важным пигментом

Длительном контакте с железом в присутствии влаги. Получающийся при этом газ, названный «дефлогистированным селитряным воздухом», уже не изменял своей окраски при смешивании с обычным воздухом (в отличие от исходного «селитряного воздуха»), а свеча горела в нем также ярко, как и в обычном «дефлогистированном воздухе» горящая лучина способствует превращению «дефлогистированного селитряного воздуха» в обычный «флогистированный воздух». 1) Приведите формулы и современные названия всех шести видов воздуха, описанных Дж. Пристли. 2) Приведите по одному уравнению реакций получения каждого из них. 54. Норвежская селитра, используемая в качестве удобрения, содержит 11,86 % азота. 1) Установите ее формулу. 2) Почему эта селитра называется норвежской, ведь в Норвегии (в отличие от Чили) нет селитряных залежей? 3) Какое отношение к норвежской селитре имеют Вольта и Биркеленд? 55. Во второй половине XIX века русский химик Н.Н. Бекетов предложил способ получения металлического рубидия. Для этого он нагревал в железном цилиндре, снабженном трубкой-холодильником и приемником, смесь гидроксида рубидия и порошкообразного алюминия. Из записей Н.Н. Бекетова: «Рубидий гонится постепенно, стекая, как ртуть, и сохраняя свой металлический блеск вследствие того, что снаряд во время операции наполнен водородом». 1) Напишите уравнение реакции, осуществленной Н.Н. Бекетовым. 2) В знакомом вам ряду напряжений металлов рубидий стоит намного левее алюминия. Как можно объяснить протекание этой реакции? 3) Можно ли применить этот процесс для получения металлического лития? 56. Йод был открыт в 1811 г. французским химиком Бернаром Куртуа. Рассказывают, что однажды в лаборатории кошка, которая всегда спокойно сидела на плече Куртуа, внезапно спрыгнула на стол, где стояли колбы с реактивами. Они разбились, и в воздух поднялись клубы фиолетового «дыма» - пары йода. Йодид натрия, полученный из водорослей, взаимодействуя с серной кислотой, дает йод I2; одновременно образуется «сернистый газ» – диоксид серы SO2. Рассчитайте суммарный объем газов (при н.у.), выделившихся в результате взаимодействия 15 г NaI с избытком серной кислоты, а также относительную плотность (по воздуху) D образовавшейся газовой смеси, если степень превращения реагента α составляет 90 %. 22 Примеры заданий теоретического тура для 10 класса Задача 1. На чашках весов уравновешены химические стаканы с 0,1 г металлического алюминия в каждом. Как изменится равновесие весов, если в один стакан прилить 5%-ный раствор соляной кислоты массой 10 г, в другой – 5%-ный раствор гидроксида натрия массой 10 г. Решение: Металлический алюминий реагирует с соляной кислотой и гидроксидом натрия согласно уравнениям: 2Al + 6 HCl → 2 AlCl3 + 3 H2 2Al + 2 NaOH + 6 H2O → 2 Na + 3 H2 При одной и той же массе прореагировавшего алюминия в обоих случаях выделяется одинаковое количество водорода. Следовательно, если алюминий растворится полностью, то равновесие весов не изменится. В случае неполного растворения алюминия перевесит та чашка весов, где меньшая доля алюминия вступит в реакцию. В 5%-ных растворах массой 10 г содержится по 0,5 г (10⋅0,05) соляной кислоты и гидроксида натрия. M(Al)=27г/моль M(HCl)= 36,5 г/моль M(NaOH)= 40 г/моль Найдем, сколько потребуется соляной кислоты и гидроксида натрия для растворения алюминия массой 0,1 г. Al массой 27⋅ 2 г вступает в реакцию с HСl массой (36,5⋅ 6) г Al массой 0,1 г вступает в реакцию с HCl массой х г х=0,406 г HCl Al массой 27⋅ 2 г вступает в реакцию с NaOH массой (40⋅ 2) г Al массой 0,1 г вступает в реакцию с NaOH массой y г y=0,148 NaOH Оба вещества HCl и NaOH взяты в избытке, поэтому в обоих стаканах произойдет полное растворение алюминия и равновесие весов не нарушится. Задача 2. Вычислите относительную плотность по азоту смеси газов, состоящей из бутана C4H10, если в этой смеси на три атома углерода приходится один атом кислорода. Решение: Формула для определения средней молярной массы смеси ν1 М1 + … + νn Mn M(ср.) = m(cм.)/ ν(cм.) = ν1 + … + νn M(C4H10) = 58г/моль М(СО2) = 44 г/моль M(N2) =28 г/моль 23 Запишем количество атомов углерода, приняв, что смесь содержит один моль атомов кислорода: ν(O) = 1 моль ν (С) = 3 моль Вычислим количество углекислого газа, учитывая, что углекислый газ содержит один моль атомов кислорода: ν(СО2) = ν (О) / 2 = 1 моль/ 2 = 0,5 моль ν1 (С) = ν(СО2) = 0,5 моль Вычислим количество атомов углерода в бутане: ν2 (С) = 3 моль – 0,5 моль – 2,5 моль ν (С4Н10) = ν(С) / 4 = 2,5 моль / 4 = 0,625 моль Вычислим среднюю молярную массу смеси бутана и углекислого газа: 0,625 моль ⋅58 г/моль + 0,5 моль ⋅44 г/моль М(ср.) = = 51,78 г/моль (0,625 + 0,5) моль Вычислим относительную плотность смеси газов по азоту: DN (см.) = 51,78 / 28 = 1,85 Задача 3. Хлорофилл является важным пигментом, обусловливающим зеленый цвет листьев растений. При сжигании 89,2 мг хлорофилла в избытке кислорода получаются только следующие четыре вещества: 242 мг газа, которым обычно газируют напитки; 64,8 мг жидкости, составляющей основу этих напитков; 5,6 мг газа, которого больше всего в земной атмосфере и 4,00 мг белого порошка, который является оксидом легкого широко используемого металла, составляющего приблизительно 2,3 % земной коры. 1) О каких веществах идет речь? 2) Рассчитайте формулу хлорофилла, учитывая, что его молекула содержит только один атом металла. 3) Напишите уравнение реакции горения хлорофилла. 4) Содержит ли хлорофилл хлор? Откуда взялось название «хлорофилл»? 5) Приведите пример природного вещества, содержащего фрагмент структуры сходного строения. Решение: 1. Напитки газируют углекислым газом, сами напитки состоят большей частью из воды, самый распространенный газ в земной атмосфере – азот, а порошок является оксидом магния. 2. Рассчитываем соотношение элементов в молекуле: n(CO2) = 242/44 = 5,5 ммоль, m (C)= 5,5⋅ 12 = 66 мг n(H2O)= 64?8/18 = 3,6 ммоль, m(H) = 3,6⋅ 2=7,2 мг n(N2) = 5,60/28 = 0,2 ммоль n(MgO) = 40/4,00 = 0,1 ммоль, m(Mg) = 0,1⋅ 24=2,4 мг m(O2) = 89,2 – 66 – 7,2 – 5,6 – 2,4 = 8 мг, n(O) = 8/16 = 0,5 ммоль. 24 Соотношение С:Н:N:О:Mg = 5,5:7,2:0,4:0,5:0,1 =55:72:4:5:1, откуда формула хлорофилла: C55H72N4O5Mg 3. C55H72N4O5Mg + 71 O2 = 55 CO2 + 36 H2O + 2 N2 + MgO 4. Греческое слово «хлорос» означает «зеленый». Отсюда название и хлора и хлорофилла. 5. Самые известные – краситель крови гем (гемоглобин) и производные гема и хлорофилла. Задача 4. Основатель всесоюзных и всероссийских химических олимпиад школьников профессор Московского государственного университета Альфред Феликсович Платэ рассказывал, что в годы Великой Отечественной войны ему было поручено срочно исследовать содержимое двухлитровой тонкостенной металлической ампулы, находившейся в пилотской кабине сбитого вражеского истребителя. По результатам анализа эта жидкость содержала 22 % углерода, 4,6 % водорода и 73,4 % брома (по массе). Результаты анализа ввергли инженеров и военных специалистов в недоумение. Выскажите ваши соображения о том, с какой целью эта тонкостенная ампула с необычным содержимым была закреплена в пилотской кабине. Решение: Соотношение между числом атомов элементов в изученной жидкости: С: H: Br = (22/12) : 4,6: (73,4/80) = 1,83: 4,6: 0,92 = 2: 5: 1. Формула исследуемой жидкости – C2H5Br. Естественно, что обнаружение значительного количества этого вещества и к тому же в необычной упаковке вызвало недоумение, пока одному из химиков- экспериментаторов не пришла в голову очень простая мысль: этилбромид кипит при температуре +38°С и помещен в пилотскую кабину в качестве потенциального противопожарного средства! При пожаре ампула лопается, и пары этилбромида, которые почти в 4 раза тяжелее воздуха, на некоторое время изолируют очаг пожара, прекращая распространение огня. Задача 5. Рассмотрите цепочку превращений: 1. А = Б + В 2. Б + C2H5Cl = Г 3. Г + C2H5Cl = Д + А 4. Б + TiCl4 = А + Е 5. Б + C4H8Cl2 = А + Ж 6. Б + N2O4 = И + NO Расшифруйте вещества А – И, если известно, что вещество А придает горький вкус морской воде, Б, В и Е являются простыми веществами, реакции 1 и 4 проходят при высокой температуре, реакция 1 идет под действием электрического тока, реакцию 2 проводят в диэтиловом эфире. 1) Напишите уравнения реакций 1 – 6. 2) Что может представлять собой вещество Ж и назовите его. 25 Решение: Горький вкус морской воде придают соединения магния. Поскольку при электролизе расплава вещества А получаются два простых вещества, то очевидно, что это галогенид магния, а именно его хлорид, как это следует из реакции 4. При взаимодействии с хлорэтаном идет реакция присоединения. Поскольку галогены с предельными углеводородами могут вступать в реакции замещения, то Б – это магний. Поскольку в реакции образуется только одно вещество, то вещество Г – продукт присоединения магния, магний-органическое вещество, реактив Гриньяра. А – MgCl2 Б – Mg В – Cl2 Г – C2H5MgCl Д – C4H10 Е – Ti Ж – C4H8 И – Mg(NO3)2 MgCl2 = Mg + Cl2 Mg + C2H5Cl = C2H5MgCl C2H5MgCl + C2H5Cl = C4H10 + MgCl2 2 Mg + TiCl2 = 2 MgCl2 +Ti C4H8Cl2 + Mg = C4H8 + MgCl2 Mg + 2 N2O4 = Mg(NO3)2 + 2 NO В зависимости от взаимного расположения атомов хлора в молекуле C4H8Cl2 могут получаться различные продукты. В случае, если атомы хлора расположены у одного атома углерода, может в заметных количествах образовываться октен. Если атомы хлора расположены у двух соседних атомов углерода, получаются непредельные углеводороды CH2=CH-CH2-CH3 (бутен-1) или CH3-CH=CH-CH3 (бутен-2). Когда атомы хлора находятся через два атома углерода, могут получаться циклические углеводороды (циклобутан) в незначительных количествах. Задания для самостоятельного решения 1. К 130 мл смеси азота, водорода и метана добавили кислород объемом 200 мл и смесь подожгли. После окончания горения и конденсации паров воды общий объем составил 144 мл при тех же условиях, а после пропускания продуктов сгорания через избыток раствора щелочи объем уменьшился на 72 мл. Найдите исходные объемы азота, водорода и метана. 2. Определите строение и назовите соединение бензольного ряда состава С9Н8, если известно, что оно обесцвечивает бромную воду, вступает в реакцию Кучерова, реагирует с амидом натрия. При окислении перманганатом калия исходное соединение дает бензойную кислоту. 3. Вы, конечно, знаете общие формулы членов гомологических рядов – метана, этена, этина. Попытайтесь вывести общую формулу членов любых 26 гомологических рядов (необязательно углеводородов), если известна формула первого члена этого ряда. 4. При сжигании некоторого газообразного углеводорода в хлоре расходуется трехкратный объем хлора. А при сжигании этого же углеводорода в кислороде расход окислителя по массе уменьшается в 1,48 раза. Какой это углеводород? 5. Теплоты сгорания метана и водорода равны соответственно 890 и 284 кДж/моль. При сгорании 6,72 л водородо-метановой смеси (н.у.) выделилось 148 кДж. Какой объем кислорода при этом израсходовался? 6. Легкокипящий углеводород, существующий в виде двух геометрических изомеров, имеет плотность паров 2,93 г/л при давлении 1215,6 ГПа и температуре 67о С. Установите его строение и приведите структурные формулы всех изомерных ему ациклических углеводородов. 7. В результате сложной химической реакции образуется смесь бромбензола C6H5Br и йодбензола C6H5I. Чтобы изучить механизм реакции, химику необходимо точно знать процентное содержание обоих соединений в полученной смеси. Смесь подвергается поэлементному анализу. Однако элементный анализ на Br и I отдельно не всегда возможен. Определите процентное содержание C6H5Br и C6H5I в смеси, если известно, что в ней углерода a %, а сумма (Br и I) составляет 1%. 8. Пары этилового спирта разложили над нагретым оксидом алюминия. Образовавшийся газ пропускали через 250 мл 0,4 М раствора брома до тех пор, пока окраска брома полностью не исчезла. Какой объем газа (н.у.) прореагировал с бромной водой? Какое количество продукта при этом получилось? 9. Омыление сложных эфиров ускоряется при действии щелочей. Для гидролиза некоторых эфиров обычно берут 6%-ный раствор гидроксида натрия (плотность 1,0 г/см3) из расчета 150 мл раствора щелочи на 1 г эфира. Сколько 40%-ной (плотность 1,4 г/см3) надо взять, чтобы прогидролизовать 6 г эфира? 10. Соединение содержит водород, массовая доля – 6,33; углерод, массовая доля – 15,19; кислород, массовая доля - 60,76, и еще один элемент, число атомов которого в молекуле равно числу атомов углерода. Определите, что это за соединение, к какому классу оно относится и как ведет себя при нагревании. 11. Предсказанный на основании теории строения и полученный А.М. Бутлеровым углеводород А пропустили над алюмо-хромовым катализатором дегидрирования при 450о С, при этом получилось два горючих газа: более летучий Б и менее летучий В. Газ В пропустили через водный раствор серной кислоты с массовой долей 64%. Происходит катализируемая кислотой димеризация вещества В, подчиняющаяся правилу Марковникова. В результате этой реакции образуется смесь двух изомерных жидких продуктов Г и Д с относительной молекулярной массой примерно вдвое большей, чем у исходного А. Продукты Г и Д после отделения от раствора кислоты и высушивания подвергли обработке горючим газом Б в 27 присутствии катализатора – скелетного никеля. Из Г и Д образовалось одно и тоже вещество Е, находящее применение как эталон автомобильного горючего с октановым числом 100. Дайте названия веществам А, Б, В, Г, Д и Е. Напишите схемы происходящих реакций. 12. Некоторое количество углеводорода состава СnH2n-2 дает с избытком хлора 21,0 г тетрахлорида. То же количество углеводорода с избытком брома дает 38,8 г тетрабромида. Выведите молекулярную формулу этого углеводорода и напишите его возможные структурные формулы. 13. При полном гидролизе смеси карбидов кальция и алюминия образуется смесь газов, которая в 1,6 раз легче кислорода. Определите массовые доли карбидов в исходной смеси. 14. При гидрировании ацетилена объемом 672 мл (н.у.) получили смесь этана и этилена, которая обесцвечивает раствор брома в тетрахлориде углерода массой 40 г, массовая доля брома в котором составляет 4%. Определите количество этана и этилена в смеси и их мольные доли. 15. Через последовательно соединенные электролизеры с инертными электродами, содержащие: первый – раствор хлорида бария, второй – раствор сульфита калия с одинаковыми количествами веществ, пропускают электрический ток. Электролиз прекратили, когда проба раствора из первого электролизера после подкисления ее избытком азотной кислоты перестала давать осадок с раствором нитрата серебра, а на аноде этого электролизера выделилось 1,12 л газа. Полученные в результате электролиза растворы смешали. Определите состав и массу выпавшего осадка. 16. При сгорании 1 моль метана выделяется 802 кДж тепла. Какой объем метана нужно сжечь (при н.у.), чтобы нагреть кусок меди массой 100 г от 20 до 50оС? Удельная теплоемкость меди 0,38 кДж/кг оС. 17. Жидкость А реагирует с фенолом в присутствии NaОН по схеме А + 2 С6Н5ОН, образуя ароматическое вещество Б (температура кипения меньше, чем у фенола), не дающее окрашивания с FeCl3; образуется также сульфат натрия. Сульфат натрия и метанол образуются и при нагревании А с водным NaОН. На основании данных условия задачи установите структуру вещества А; ответ обоснуйте. 18. Некоторый альдегид Б является следующим за альдегидом А в гомологическом ряду альдегидов. 19 г альдегида Б прибавили к 100 г водного раствора альдегида А с массовой долей последнего 23%. Добавление аммиачного раствора AgNO3 к 2 г раствора альдегидов вызывает выделение 4,35 г серебра. 19. Газы, образовавшиеся при полном сгорании ацетилена и пропена объемом 1,12 л (н.у.), пропущены через раствор гидроксида калия объемом 0,3 л, молярная концентрация которого равна 0,5 моль/л. Полученный при этом раствор может поглотить еще 0,448 л диоксида углерода. Определите состав исходной смеси в процентах по объему. 20. Для проведения некоторых химических реакций в лаборатории необходимо иметь «абсолютный спирт», практически не содержащий воды. 28 Как можно его приготовить из обычного спирта – ректификата, содержащего около 4% влаги? 21. 30 мл пропан-бутановой смеси смешали в эвдиометре с 200 мл кислорода и взорвали. До взрыва реакционная смесь имела температуру 127о С и нормальное давление. После приведения условий к исходным объем газов в эвдиометре составил 270 мл. Какой состав в объемных процентах имеет пропан-бутановая смесь? 22. Прокалили 17,5 г нитрата неизвестного металла в атмосфере инертного газа. Летучие продукты собрали и охладили. При этом образовалось 13,5 г 70%-го раствора азотной кислоты. Установите формулу нитрата. 23. Смесь, состоящую из метана и кислорода, взорвали. После приведения к первоначальным (комнатным) условиям оказалось, что плотность увеличилась в полтора раза (по сравнению с плотностью исходной смеси). Пропускание продуктов через избыток раствора Ca(OH)2 дает 13 мл непоглотившегося газа. Рассчитайте: а) состав смесей до и после взрыва (по объему); б) объем исходной смеси. Приведите уравнения реакций. 24. В избытке кислорода сожгли 1,00 г 10%-ного раствора неизвестного вещества в ледяной уксусной кислоте, причем израсходовали 672 мл кислорода (н.у.). При этом образовались только вода (0,569 мл) и углекислый газ (708 мл при н.у.). Раствор какого вещества сожгли? С какими из предложенных веществ оно способно реагировать: KOH, HI, CH3 – CH = CH – CH3? Напишите уравнения реакций. 25. На нейтрализацию 4,36 г смеси муравьиной, уксусной и щавелевой кислот расходуется 45 см3 2 н раствора щелочи. При полном окислении такой же навески образуется 2464 см3 углекислого газа (н.у.). В каком молярном отношении смешаны кислоты? 26. Объем углекислого газа, образовавшегося в результате сжигания углеводорода с относительной плотностью по водороду менее 25, составляет 4/7 суммы объемов прореагировавших углеводорода и кислорода. Какова формула углеводорода? 27. Через горячий 10%-ный раствор муравьиной кислоты массой 75 г пропускали газообразный хлор до тех пор, пока массовые доли обеих кислот в растворе не стали равными. Определите массу образовавшихся кислот. 28. В XVI в. немецкий химик Андреас Либавий нагреванием серебристой жидкости с порошком HgCl2 и последующей конденсацией выделяющихся паров получил тяжелую (ρ=2,23 г/см3) прозрачную жидкость, которую назвал «спирт сулемы». При действии сероводорода на «спирт сулемы» образуются золотисто-желтые пластинки, называемые «сусальным золотом», причем 1 объем «спирта сулемы» может прореагировать с 383 объемами сероводорода (н.у.). Если же подействовать на «спирт сулемы» 29 водным раствором аммиака, то образуется белый осадок гидроксосоединения, обладающего амфотерными свойствами. 1) Что представляют собой исходная серебристая жидкость, которую использовал Либавий, «спирт сулемы», а также «сусальное золото»? 2) Можно ли отнести «спирт сулемы» к полярным растворителям? Почему? 3) Напишите уравнения всех упомянутых в условии химических реакций. 29. На Международном конгрессе химиков в 1860 году было принято следующее определение: «Молекула – это наименьшее количество вещества, участвующее в реакции». В настоящее время удается получить молекулярный хлорид натрия – в виде отдельных молекул, изолированных в твердом аргоне при температуре около 10 К (-263°С). 1) Как может отличаться химическая активность молекулярного и кристаллического хлорида натрия в реакциях без участия растворителей (при одинаковых условиях)? 2) Каковы возможные причины такого отличия? 30. Х.А. Армстронг, автор статьи «Химия», помещенной в девятом издании «Британской энциклопедии» (1878), писал, что Менделеев предложил для атомного веса урана значение 240 вместо старого значения 120, установленного Берцелиусом. При этом Армстронг отдавал предпочтение третьему значению, равному 180. Как теперь известно, прав был Менделеев. Истинная формула урановой смолки – U3O8. Какую формулу могли бы написать для этого минерала Берцелиус и Армстронг? 31. А.Е. Фаворский в 1887 г. провел следующие исследования: а) при взаимодействии 2,2–дихлорбутана с порошкообразным КОН образовался углеводород состава С4Н6, который при обработке аммиачным раствором оксида серебра дал серебряное производное; б) при обработке 2,2–дихлорбутана спиртовым раствором щелочи образовался углеводород того же состава, но не вступающий в реакцию с аммиачным раствором оксида серебра. Дайте объяснения этим явлениям. 32. Первая мировая война. На Западном фронте в Бельгии, вдоль реки Ипр, все атаки германской армии отражались хорошо организованной обороной англо-французских войск. 22 апреля 1915 г. в 17 часов со стороны немецких позиций между пунктами Биксшуте и Лангемарк над поверхностью земли появилась полоса белесовато-зеленого тумана, который через 5-8 мин продвинулся на тысячу метров и бесшумной гигантской волной накрыл позиции французских войск. В результате газовой атаки было отравлено 15 тыс. человек, из которых свыше 5 тыс. умерли на поле боя, а половина оставшихся в живых стали инвалидами. Эта атака, показавшая эффективность нового вида оружия, вошла в историю как «черный день у Ипра» и считается началом химической войны. 1) Напишите структурную (графическую) формулу вещества, примененного в этой газовой атаке. Если какие-либо атомы имеют неподеленные электронные пары, отметьте их. 30 2) Приведите название описанного вещества по систематической номенклатуре. Укажите другие его названия (тривиальные и пр.). 3) Напишите уравнения реакции, по которой к настоящему времени произведено основное количество этого вещества. Укажите условия проведения технологического процесса синтеза. 4) Составьте уравнения реакций взаимодействия этого вещества с водой, с водным раствором гидроксида натрия. 5) Предложите два доступных в полевых условиях способа дегазации этого вещества, приняв во внимание, что разведение открытого огня не может оказать защитного действия. 33. Элементы с порядковыми номерами 110-112 были открыты в 1994- 1996 годах на ускорителе тяжелых ионов в г. Дармштадте (Германия) в количестве одного, трех и одного атомов соответственно. Новые элементы образовались при бомбардировке ионами свинцовой и висмутовой мишеней в результате следующих реакций: 34. ??? + 208Pb → 269110Uun + n, 35. ??? + 209Bi → 272111Uuu + n, 36. ??? + 208Pb → 277112Uub + n. Составьте полные уравнения ядерных реакций, заменив знаки вопроса соответствующими числами или символами химических элементов. Объясните, что означают трехбуквенные символы новых элементов. 34. В органической химии многие реакции носят имена ученых, их открывших. Напишите уравнения следующих реакций с указанием условий их проведения (по одному конкретному примеру для каждой реакции): 1) восстановление по Зинину; 2) гидратация по Кучерову; 3) окисление по Прилежаеву; 4) нитрование по Коновалову; 5) окисление по Байеру-Вагнеру- Виллигеру; 6) галогенирование по Геллю-Фольгарду-Зелинскому. Примеры заданий теоретического тура для 11 класса Задача 1. При взаимодействии определенного количества некоторого металла с 20 %-ным раствором серной кислоты объемом 214, 91 мл (ρ= 1,14 г/мл) образовался 22,53 %-ный раствор сульфата. Металл и серная кислота взяты в стехиометрических соотношениях. Это же количество металла полностью взаимодействует с раствором гидроксида натрия массой 80 г. вычислите массовую долю образовавшегося при этом вещества. Определите, какой взят металл. Решение: Найдем массу раствора и содержание в нем серной кислоты: m(раствора) = V⋅ρ = 214,91 мл 1,14 г/мл = 245 г, m(H2SO4) = m(раствора) ⋅W (H2SO4) = 245 г ⋅0,2 = 49 г. Найдем химическое количество серной кислоты: N(H2SO4) = m/M = 49г /98 г/моль = 0,5 моль В этом количестве кислоты содержится водород массой 1 г (49⋅ 2: 98). Пусть масса металла х г. Тогда масса конечного раствора равна: 31

Уже давно было подмечено, что лишенные окраски клетки и органы растения (например, корни) не способны фотосинтезировать. Особенно наглядны в этом отношении альбиносы (от лат. альбус - белый) - неокрашенные проростки, развивающиеся иногда у высших растений даже при хорошем освещении. Отсутствие окраски вызывается у таких растений какими-то внутренними факторами, препятствующими образованию особых красящих веществ - пигментов (от лат. пигментум - краска) при самых благоприятных для этого внешних условиях. При полном альбинизме, который довольно часто можно наблюдать у кукурузы, проростки не способны осуществлять фотосинтез и поэтому погибают от истощения вскоре после появления двух или трех листочков. Частичный альбинизм обычно встречается при пестролистности, когда белыми и не способными к фотосинтезу оказываются отдельные участки листа. Пестролистные формы отличаются своеобразной красотой и в связи с этим широко используются как декоративные растения.

Явление альбинизма у растений свидетельствует об огромной роли пигментов для фотосинтетической деятельности. Установлено, что процесс фотосинтеза связан прежде всего с поглощением света пигментами пластид. Энергия солнечной радиации сможет превратиться в химическую энергию образующихся при этом органических веществ только в том случае, если она сначала будет поглощена пигментами фотосинтезирующих систем и в первую очередь зеленым пигментом - хлорофиллом.

Пигменты фотосинтезирующих систем можно разделить на три основные группы: хлорофиллы, каротиноиды и фикобилипротеиды. Пигментный состав различных фотосинтезирующих систем неодинаков и зависит от принадлежности растения к той или иной систематической группе.

Важнейшие представители пигментов фотосинтезирующих систем у различных групп растений

Пигменты Серобактерии Водоросли Высшие растения
пурпурные зеленые сине-зеленые красные диатомовые бурые зеленые
Хлорофиллы
хлорофилл a - - + + + + + +
хлорофилл b - - - - - - + +
хлорофилл c - - - - + + - -
хлорофилл d - - - + - - - -
бактериохлорофилл + - - - - - - -
бактериовиридин - + - - - - - -
Фикобилипротеиды
фикоэритрин - - + + - - - -
фикоциан - + + - - - -
Каротиноиды
β-каротин - - + + + + + +
лютеин + - - + +
виолаксантии - - - + + +
фукоксантин - - - ? + + - -

Условные обозначения:

+ наличие пигмента; - отсутствие; ? - очень малое количество; пустые клетки - не было исследований.

Для обозначения различных форм хлорофилла используются буквы латинского алфавита: а, b , с, d .

Из таблицы видно, что среди различных форм хлорофилла наибольшее распространение имеет хлорофилл a - обязательный компонент пластид всех фотосинтезирующих растений. Хлорофилл a отсутствует у пурпурных и зеленых серобактерий, для которых характерна наиболее примитивная форма синтеза органических веществ, так называемый бактериальный фотосинтез или фоторедукция. Эти бактерии восстанавливают CO 2 в анаэробных условиях до уровня органических веществ за счет энергии солнечного света с использованием сероводорода или некоторых других неорганических веществ, при этом не происходит выделения молекулярного кислорода. Вместо хлорофилла a пурпурные серобактерии содержат бактериохлорофилл, а зеленые серобактерии - бактериовиридин.

Строение пигментов

Изучение химических свойств хлорофилла a позволило расшифровать его структуру. Правильность предложенной структурной формулы подтверждена полным синтезом хлорофилла, осуществленным в 1960 г. почти одновременно в лабораториях М. Штрелля и Р. Вудварда. Основу молекулы хлорофилла составляют четыре пиррольных кольца (I, II, III и IV). Пиррол представляет собой пятичленное циклическое соединение. Остатки пиррольных колец, соединяясь между собой, образуют ядро молекулы хлорофилла, в центре которого помещается атом магния. Он соединяется с азотом пиррольных колец, причем два атома азота соединяются с магнием своими основными валентностями, а два других - дополнительными валентностями. Зеленый цвет хлорофилла как раз и определяется наличием металла в его молекуле. В этом легко убедиться, стоит только осторожно подействовать на спиртовую вытяжку хлорофилла кислотой. Магний замещается двумя атомами водорода из кислоты и получается бурый продукт - феофитин. Восстановить зеленый цвет вытяжки можно путем добавления какой-либо соли магния или другого двухвалентного металла.

Одной из специфических черт хлорофиллов является наличие в их молекуле добавочного кольца из пяти углеродных атомов (V). Кислотная, или карбоксильная, группа (-СООН) этого кольца соединена эфирной связью с метиловым спиртом (СН 3 ОН). Вторая карбоксильная группа, находящаяся около четвертого пиррольного кольца, соединена эфирной связью с другим спиртом - фитолом (С 20 Н 39 ОН).

Таким образом, по своей химической природе хлорофилл (см. его структурную формулу на обложке книги) - сложный эфир двухосновной кислоты хлорофиллина, в одном карбоксиле которой водород замещен остатком метилового спирта (-СН 3), а в другом - остатком фитола (-С 20 Н 39).

Интересно отметить, что наличие остатка фитола обусловливает липофильность молекулы хлорофилла, проявляющуюся в его растворимости в жировых растворителях. Кроме того, остаток фитола играет существенную роль в образовании комплексов хлорофилла с липоидами. Выделенный в чистом виде фитол напоминает бесцветную воскообразную массу.

По своей химической природе хлорофилл весьма близок к некоторым важным дыхательным ферментам, а также к красящему веществу крови - гему гемоглобина. Общность химической природы двух основных пигментов живых организмов, а именно хлорофилла растений и гемоглобина животных, заключается в том, что у гема также имеется ядро, состоящее из четырех соединенных друг с другом пиррольных колец, в центре которого находится атом металла, только у хлорофилла - это магний, а у гема - железо. Исследования С. Граника, Т. Н. Годнева и других ученых показали, что биосинтез хлорофилла и гема осуществляется на начальных этапах аналогичным путем из одних и тех же веществ. Эти факты сходства в строении в способе образования хлорофилла и гема гемоглобина еще раз указывают на родство происхождения столь отдаленных организмов, как растения и животные.

Помимо хлорофилла a, обладающего сине-зеленой окраской, в хлоропластах зеленых водорослей и высших растений обнаружена еще другая форма желто-зеленого цвета - хлорофилл b. В отличие от хлорофилла a, имеющего эмпирическую формулу C 55 H 72 O 5 N 4 Mg, хлорофилл b содержит лишь на два атома водорода меньше и на один атом кислорода больше. В структурном отношении это незначительное различие сводится к тому, что вместо метильной группы (-СН 3) при втором пиррольном кольце у хлорофилла b имеется альдегидная группа COH. Красные водоросли содержат два зеленых пигмента: хлорофиллы a и d, очень близкие по структуре. Они различаются только тем, что у хлорофилла d при первом пиррольном кольце стоит не винильная группа (-СН = СН 2), а альдегидная. У бурых и диатомовых водорослей вместо хлорофилла b содержится хлорофилл с, который в отличие от других форм лишен остатка фитола.

Пурпурные серобактерии имеют весьма близкий к хлорофиллу a бактериохлорофилл. Небольшое различие состоит в том, что у этого пигмента при первом пиррольном кольце находится вместо винильной ацетильная группа (-СО-СН 3), а также на два атома водорода больше во втором пиррольном кольце. Характерный для зеленых серобактерий бактериовиридин (иногда его называют хлоробиум-хлорофиллом) изучен пока недостаточно полно, состав и строение окончательно еще не установлены. Известно только, что он не дает характерных реакций на присутствие в его молекуле пятого кольца и содержит вместо фитола транс-фарнезол (C 15 H 26 O).

Наряду с хлорофиллами к постоянным компонентам комплекса пигментов фотосинтезирующих систем относятся каротиноиды. Обычно это желтые, оранжевые и светло-красные пигменты, которые хорошо растворяются в жирах и растворителях жиров, но не растворяются в воде. Как правило, их окраска маскируется интенсивным зеленым цветом хлорофиллов. Поэтому в природе только осенью, когда преимущественно происходит разрушение зеленых пигментов, листья желтеют и каротиноиды становятся доступными для непосредственного наблюдения.

К основным каротиноидам пластид относятся каротины, представляющие собой ненасыщенные углеводороды (эмпирическая формула C 40 H 56), и их кислородсодержащие производные - ксантофиллы.

Молекулы большинства каротиноидов имеют вид длинной углеродной цепи, которая часто заканчивается на одном или на обоих концах кольцом ионона. Атомы углерода соединяются друг с другом в длинную цепь посредством чередующихся одинарных и двойных связей. Такие связи называются конъюгированными, их наличие в молекуле обусловливает характерную окраску каротиноидов.

Пластиды высших растений и большинства водорослей содержат до восьми и больше различных каротиноидов. Кратко остановимся на характеристике некоторых из них.

Типичными, широко распространенными каротиноидами высших растений являются β-каротин, лютеин и виолаксантин. β-каротин - это желто-оранжевый пигмент. Название его происходит от латинского слова карота - морковь, в корнях которой отлагается значительное количество его в виде желто-оранжевых кристаллов. К β-каротину близок по составу и структуре лютеин. Это желтый пигмент из группы ксантофиллов, представляющий собой двухатомный спирт с эмпирической формулой С 40 Н 56 О 2 , причем обе спиртовые группы (-ОН) находятся в кольцах ионона. Другим близким к лютеину пигментом из группы ксантофиллов является виолаксантин с эмпирической формулой С 40 Н 56 О 4 . Он имеет в своем составе на два атома кислорода больше, чем лютеин. Установлено, что эти два атома кислорода входят в состав иононовых колец в виде добавочных эпокси-группировок (> O), отличающихся большой лабильностью и реакционной способностью.

К группе ксантофиллов относится также и фукоксантин (от лат. фукус - род бурых водорослей и от греч. ксантос - желтый), встречающийся у бурых и диатомовых водорослей. Он имеет оранжево-бурый цвет, близок по своим свойствам к лютеину и виолаксантину, однако состав и структура его окончательно еще не выяснены, поэтому в эмпирической формуле (С 40 Н 54-60 О 6) указывается возможное количество атомов водорода.

Набор каротиноидов в хроматофорах фоторедукторов (пурпурные и зеленые серобактерии) существенно отличается от такового в хлоропластах фотосинтетиков. Для фоторедукторов характерно отсутствие пигментов из группы ксантофиллов, содержащих эпокси-группировки. Основным каротиноидом зеленых серобактерий оказался желтый пигмент, γ-каротин, у которого имеется только одно иононовое кольцо. Что касается пурпурных серобактерий, то у них широко распространены ликопин и другие близкие к нему каротиноиды ациклического типа, не имеющие в своем составе ни одного иононового кольца.

Помимо хлорофиллов и каротиноидов, красные и сине-зеленые водоросли содержат еще дополнительные пигменты, хорошо растворимые в воде, так называемые фикобилипротеиды, к которым относятся фикоэритрины (красного цвета) и фикоцианы (сине-фиолетового цвета). Само название указывает на то, что в химическом отношении эти пигменты представляют собой сложные белки - протеиды. Небелковыми компонентами у них служат обусловливающие окраску фикобилины, которые связываются с белками в сложные комплексы. Связь небелковой группы с белком настолько прочна, что отделить фикобилины от белка можно лишь путем кипячения с сильными кислотами.

Небелковым компонентом у фикоэритринов является мезобилиэритрин, а у фикопианов - мезобиливиолин, структура которых представлена на рисунке. Как видно, фикобилины имеют в своем составе четыре пиррольных кольца, соединенных друг с другом в виде развернутой цепи, однако в деталях структура их окончательно еще не установлена. Важно подчеркнуть, что фикобилины весьма близки по своей химической природе к желчным пигментам животных.

Теперь кратко остановимся на вопросе о количественном содержании основных представителей различных групп пигментов и о их соотношении. Общее количество хлорофилла невелико и составляет в среднем около 1 % от сухого вещества листа, но оно может сильно варьировать, изменяясь у водорослей от 0,6 до 1,5%, а у высших наземных растений от 0,7 до 1,3%. Даже в пределах одного и того же растения разные листья часто значительно отличаются по содержанию зеленых пигментов, Хрофилла а всегда больше, на три его молекулы обычно приходится одна молекула хлорофилла b. Однако у теневых листьев и теневыносливых растений хлорофилла b больше, чем у светолюбивых. Так, у многих зеленых водорослей, произрастающих в условиях сильного затенения, среднее отношение хлорофилла a к хлорофиллу b снижается до 1,4. Вместе с тем их соотношение у исключительно светолюбивых растений в среднем доходит до 5,5.

В нормально развитых листьях каротиноидов гораздо меньше, чем. зеленых пигментов, примерно в 3-5 раз, а иногда даже еще меньше. Отношение же ксантофиллов к каротину может изменяться в зависимости от вида растений и условий их произрастания в очень широких пределах, от 1,8 до 15, но в среднем оно таково, что на 2-3 молекулы ксантофиллов приходится одна молекула каротина.

По данным В. Н. Люб именно, отношение фикоэритрина к хлорофиллу колеблется у разных видов красных водорослей от 0,06 до 0,66. Содержание фикоэритрина возрастает с увеличением глубины обитания этих водорослей. В среднем на одну квантосому приходится 230 молекул хлорофилла и 48 молекул каротиноидов.

Оптические свойства и состояние пигментов

Глубоко понять механизм процесса фотосинтеза возможно лишь на основе современных представлений о физических свойствах пигментов и их состоянии в живой клетке. Основная функция пигментов фотосинтезирующих систем заключается в поглощении света. Отсюда понятно то исключительно важное значение, какое имеет познание оптических свойств различных пигментов и в первую очередь их спектров поглощения.

Поглощение световой энергии пигментами осуществляется не сплошным, а избирательным образом и зависит от структуры молекулы данного пигмента. Явление это может наблюдаться как в видимой части солнечного спектра, так и в невидимых участках (инфракрасном и ультрафиолетовом), однако особый интерес представляют спектры поглощения пигментов только в интервале фотосинтетически активной радиации (380-720 ∙ 10 -9 м).

Хлорофиллы a, b, с, d, а также бактериовиридин имеют два основных максимума поглощения в красной и сине-фиолетовой частях спектра с незначительными различиями в их положении. Как видно на рисунке, у хлорофилла b максимум поглощения в красной части спектра несколько смещен в сторону коротковолновых лучей, а в сине-фиолетовой части, наоборот, в сторону длинноволновых лучей по сравнению с положением аналогичных максимумов у хлорофилла а.

Спектры поглощения растворов зеленых пигментов показывают, что сине-фиолетовые и красные лучи поглощаются интенсивно, тогда как зеленые и желтые - очень слабо, поэтому последние хорошо проходят через эти пигменты, обусловливая их цвет. Поскольку желтые лучи маскируются зелеными, окраска хлорофилла получается зеленая. Однако тот же самый раствор хлорофилла, имеющий в проходящих лучах зеленую окраску, в отраженном свете воспринимается как вишнево-красный благодаря явлению флуоресценции.

Флуоресценция (от англ. флуэреснт - свечение) представляет собой кратковременное свечение, прекращающееся практически одновременно с прекращением освещения данного вещества. Способность к такого рода свечению является очень важным оптическим свойством зеленых пигментов, указывающим на их значительную фотохимическую активность. Это свойство гораздо лучше обнаруживается не на живых листьях, а на растворах зеленых пигментов, потому что свечение хлорофилла, находящегося в клетках листа, примерно в 10 раз слабее, чем в растворе. Красное свечение хлорофилла легко наблюдать, если рассмотреть его вытяжку (например, спиртовую) со стороны падающего света, а за пробиркой с вытяжкой поместить черный фон, поглощающий все проходящие через нее лучи. При этом естественно возникает вопрос: почему окраска вытяжки хлорофилла в отраженном свете не такая, как в проходящем? Постараемся кратко объяснить это.

Свет поглощается дискретно, т. е. порциями в виде квантов, или фотонов. Энергию кванта (Е) можно выразить, как E = h ∙ v, где h - постоянная Планка, v - частота колебаний света, обратно пропорциональная длине волны. В основном, устойчивом состоянии молекулы хлорофилла каждый электрон находится на определенном энергетическом уровне и обладает соответствующим запасом энергии. Поглощение кванта света приводит к переходу электрона на более высокий энергетический уровень, при этом молекула становится возбужденной с избыточным количеством энергии. Однако время, в течение которого молекула существует в возбужденном состоянии, чрезвычайно мало, примерно 10 -9 сек, а следовательно, возбужденное состояние неустойчиво и вскоре происходит возвращение молекулы к более устойчивому состоянию с меньшим запасом энергии, или к исходному. Возбужденная молекула может терять энергию несколькими путями, наиболее важным из которых является путь превращения этой энергии в химическую энергию. Кроме того, энергия возбужденной молекулы может либо рассеиваться в виде тепловой энергии как внутримолекулярным, так и межмолекулярным путем, либо испускаться в виде кванта света. При флуоресценции возбужденные молекулы испускают кванты света, обладающие меньшей энергией, а значит, большей длиной волны по сравнению с теми квантами, которые вызывают это свечение. Каждое вещество испускает лучи определенной длины волны, т. е. имеет свой специфический спектр флуоресценции. По таким спектрам можно довольно легко отличить одно флуоресцирующее вещество от другого.

Спектр флуоресценции хлорофилла имеет только один основной максимум свечения, приходящийся на более длинноволновую красную область спектра в сравнении с максимумом поглощения в этой же области. Это значит, что при флуоресценции хлорофилл всегда испускает только длинноволновые красные лучи даже в том случае, когда он освещается синими или фиолетовыми лучами. Вот почему вытяжка хлорофилла имеет в отраженном свете темно-красную окраску.

Кроме зеленых пигментов, флуоресцировать способны и фикобилипротеиды, причем фикоциан в растворе обнаруживает красное свечение, фикоэритрин - оранжевое. Каротиноиды же обычно считаются не способными к флуоресценции.

Ученых давно интересовало, в каком состоянии находится хлорофилл в хлоропласте. Особое состояние пигментов в живой клетке убедительно доказывается, в частности, несовпадением их оптических свойств со свойствами растворов тех же самых пигментов, например несовпадением спектров поглощения, а также спектров флуоресценции. Максимумы поглощения хлорофиллов и ряда других пигментов, находящихся в живой клетке, оказываются сильно сдвинутыми в длинноволновую область по сравнению с максимумами поглощения света растворами этих пигментов. Так, раствор бактериохлорофилла имеет в инфракрасной области спектра только один максимум поглощения при 770-780 ∙ 10 -9 м (7700-7800 Å), тогда как этот же пигмент, но находящийся в клетках пурпурных серобактерий, обнаруживает три максимума поглощения, причем все они приходятся на более длинноволновый участок инфракрасных лучей: 800, 850 и 890 ∙ 10 -9 м (8000, 8500 и 8900 Å). Максимум флуоресценции бактериохлорофилла живых клеток также значительно сдвинут в длинноволновую часть и приходится на 900-920 ∙ 10 -9 м вместо 780-790 ∙ 10 -9 м - положения максимума флуоресценции этого пигмента в растворе.

До недавнего времени широкое распространение имело положение, высказанное крупнейшим специалистом в области фотосинтеза В. Н. Любименко, что особое состояние зеленых пигментов в живой клетке обусловливается связью их с белками. Однако сейчас накопилось достаточно экспериментальных данных, свидетельствующих о том, что специфику оптических свойств хлорофиллов живых клеток недостаточно объяснить только связью их с белками. А. А. Красновский, Т. Н. Годнев и другие установили возможность существования одного и того же пигмента живой клетки в нескольких формах, причем некоторым из них свойственно агрегированное состояние с разным характером упаковки молекул. Оказалось, что положение максимумов поглощения на спектрах хлорофилла а, бактериохлорофилла и бактериовиридина зависит от характера агрегации. В качестве примера, иллюстрирующего влияние агрегации пигмента на его спектры, приведем результаты опытов по изучению бактериохлорофилла, находящегося в живых клетках (пурпурные бактерии) и модельных системах; эти опыты проведены А. А. Красновским с сотрудниками. В некоторых случаях модельными системами служили твердые пленки, которые получались путем выпаривания эфирного раствора бактериохлорофилла в вакууме, т. е. в условиях, заведомо содействующих агрегации молекул пигмента.

Хорошее совпадение спектров поглощения и спектров флуоресценции твердых пленок этого пигмента с соответствующими спектрами пурпурных бактерий указывает на наличие в живых клетках агрегированных форм бактериохлорофилла. В настоящее время считается, что пурпурные бактерии содержат три различно агрегированные формы зеленого пигмента. В соответствии с положением основных максимумов поглощения в инфракрасной части спектра при 800, 850 и 890 ∙ 10 -9 м эти формы бактериохлорофилла принято обозначать как Б800, Б850 и Б890.

Проблема множественности форм хлорофилла приобрела исключительно важное значение после того, как было установлено, что первичный процесс фотосинтеза включает в себя не одну фотохимическую реакцию, а две и что различные формы пигмента могут осуществлять самостоятельно специфические функции.

Спектры всех каротиноидов в видимой области характеризуются двумя или тремя интенсивными полосами поглощения в сине-фиолетовой части. Спектры поглощения фикоэритрина и фикоциана близки между собой, их максимумы приходятся на зеленую и желтую части спектра, располагаясь между двумя основными полосами поглощения зеленых пигментов. Это позволяет считать, что фикобилипротеиды наряду с каротиноидами являются дополнительными пигментами к хлорофиллу.

Адаптация к условиям освещения

Фикоциан и фикоэритрин как дополнительные пигменты играют существенную роль в адаптации (приспособлении) растений к условиям освещения, обеспечивая наилучшее использование солнечной энергии для фотосинтеза.

Адаптацию к качеству и интенсивности света можно наглядно видеть на примере вертикального распределения морских водорослей в зависимости от их окраски: в самых поверхностных слоях воды преобладают зеленые водоросли, в самых глубоких - красные, бурые водоросли занимают промежуточное положение. Такое распределение водорослей вызывается следующими причинами. Спектральный состав и интенсивность солнечного света, проходящего через толщу воды, претерпевают большие изменения. Поглощаясь избирательно, солнечный свет обедняется в первую очередь красными лучами, и на глубине в несколько метров он становится синевато-зеленоватым, практически лишенным красных лучей, которые полностью гасятся на глубине примерно 20 м. В связи с этим появление в процессе эволюции дополнительных к хлорофиллу пигментов, интенсивно поглощающих зеленые и желтые лучи, обеспечило красным и бурым водорослям возможность использования для фотосинтеза тех участков солнечного света, которые достигают больших глубин. Можно сказать, что наличие у бурых и красных водорослей дополнительных пигментов следует рассматривать как специальное приспособление к условиям освещения, и в первую очередь как хроматическую адаптацию к наилучшему использованию лучей преобладающей окраски, проходящих через толщу воды.

Кроме того, при прохождении света через толщу воды резко снижается и его интенсивность. Так, свет, проникающий на 20-метровую глубину, ослаблен по сравнению с освещенностью водной поверхности примерно в 20 раз. Поэтому у глубоководных морских водорослей, помимо хроматической адаптации, хорошо выражено также и приспособление к использованию света очень низкой интенсивности. Глубоководные водоросли с полным основанием могут быть отнесены к типичным «тенелюбивым» растениям с высоким содержанием пигментов, в связи с чем прямой солнечный свет повреждает их.

Что касается наземных растений, то у них первостепенное значение имеет адаптация к интенсивности света, поскольку интенсивность света подвержена колебаниям в большей мере, чем его спектральный состав. Хроматическая адаптация выражена у них слабо и проявляется в изменении соотношений между разными пигментами хлоропластов, главным образом между хлорофиллом a и хлорофиллом b, а также между хлорофиллами и каротиноидами.

Адаптация к интенсивности света у наземных растений проявляется в существовании тенелюбивых и светолюбивых типов. У тенелюбивых растений, произрастающих, например, под пологом леса, хорошо выражена адаптация к условиям слабого освещения. Как известно, затененные листья отличаются гораздо более высоким содержанием зеленых пигментов в целом, что содействует лучшему поглощению света низкой интенсивности. Кроме того, листья теневыносливых растений содержат больше хлорофилла Ь, ив этом как раз нетрудно усмотреть приспособление к несколько измененному спектральному составу света, проникающего под полог леса. В тени под нависающей сверху листвой рассеянный свет относительно обогащен коротковолновыми лучами в области 450-480 ∙ 10 -9 м, которые интенсивно поглощаются хлорофиллом 6, иногда называемым в связи с этим теневым зеленым пигментом.

Биосинтез пигментов

Исключительно большие успехи достигнуты за последние 20 лет в области изучения биосинтеза пигментов. Особенно глубоко к настоящему времени изучен биосинтез хлорофилла. С помощью меченых атомов, бумажной хроматографии и других современных методов исследования удалось почти полностью расшифровать химизм всех основных этапов формирования молекулы хлорофилла, определить их последовательность, а также выяснить условия, необходимые для протекания тех или иных реакций, и ферментные системы, катализирующие отдельные реакции. Мы не имеем возможности остановиться здесь подробно на всех реакциях биосинтетической цепи хлорофилла, опишем лишь вкратце основные этапы и приведем структурные формулы важнейших промежуточных соединений.

Начальный этап биосинтеза молекулы хлорофилла a включает ряд реакций, в результате которых из несложных органических веществ - аминокислоты гликокола (NH 2 -СН 2 -СООН) и янтарной кислоты (НООС-СН 2 -СН 2 -СООН) - возникает δ-аминолевулиновая кислота, а при конденсации двух молекул этой кислоты образуется порфобилиноген.

Один из следующих важных этапов складывается из реакций, приводящих сначала к синтезу основного структурного ядра хлорофилла путем соединения четырех молекул порфобилиногена, а затем к образованию протохлорофиллида а, имеющего уже в своем составе атом магния. После этого происходит восстановление протохлорофиллида, присоединяющего два атома водорода за счет двойной связи четвертого пиррольного кольца, и превращение его в хлорофиллид а. Для подавляющего большинства видов растений эта реакция является фотохимической и происходит только в присутствии света. Исключение составляют многие водоросли, а также некоторые представители мхов и папоротников, у которых реакция восстановления может осуществляться и в темноте.

Вслед за фотохимическим восстановлением имеет место присоединение к хлорофиллиду а фитола, которое не нуждается в присутствии света, но осуществляется при участии фермента хлорофиллазы. Присоединение фитола - это заключительный этап биосинтетической цепи, на котором хлорофиллид а превращается в хлорофилл а.

Раньше считалось, что к протохлорофиллиду сначала присоединяется не водород, а фитол, а затем уже образующийся при этом протохлорофилл восстанавливается фотохимически до хлорофилла. Получалось, что непосредственным предшественником хлорофилла следовало признать протохлорофилл. Сравнительно недавно было установлено, что хотя образование протохлорофилла в растении таким путем и не исключается, однако последний этап биосинтеза хлорофилла осуществляется главным образом через хлорофиллид, который служит основным предшественником хлорофилла.

С помощью меченых атомов показано, что хлорофилл a является в свою очередь предшественником хлорофилла b. При этом одновременно было доказано, что биосинтез хлорофилла b из хлорофилла а не нуждается в обязательном участии света и может происходить даже в полной темноте.

Хлорофилл с может образовываться в растениях, согласно предположению С. Граника, из протохлорофиллида а, поскольку оба эти соединения имеют невосстановленное четвертое пиррольное кольцо и лишены фитольного остатка.

Биосинтез каротиноидов изучен пока недостаточно полно и не все его звенья установлены окончательно. До сих пор не расшифрован химизм отдельных реакций и не выявлена природа соединений, которые служат непосредственными предшественниками различных каротиноидов. Лучше всего изучены начальные этапы, и можно считать окончательно доказанным, что биосинтез каротиноидов и фитола идет одним и тем же путем по крайней мере до образования мевалоновой кислоты.

Установлено также, что свет стимулирует биосинтез как каротиноидов, так и фитола. Хотя образование этих веществ протекает интенсивнее на свету, свет все-таки не обязателен для их биосинтеза. Дальнейшие этапы перехода от мевалоновой кислоты, имеющей в своем составе шесть углеродных атомов, к фитолу, содержащему двадцать углеродных атомов, и тем более к каротиноидам, содержащим сорок углеродных атомов, окончательно еще не установлены и трактуются по-разному.

В ходе исследования биосинтеза зеленых пигментов возникло представление о возможной связи между образованием и разрушением молекул хлорофилла. В дальнейшем с помощью изотопного метода Ф. В. Турчину, В. М. Кутюрину, А. А. Шлыку и другим удалось обнаружить и изучить процесс обновления хлорофилла. По мнению А. А. Шлыка, полученные экспериментальные данные позволяют говорить пока что о главном способе обновления хлорофилла - через распад молекул, ранее образовавшихся, и полный синтез новых. Скорость обновления может изменяться в зависимости как от вида растения, так и от условий произрастания. По предварительным данным, в течение суток обычно обновляется около 10% общего числа всех имеющихся молекул. Однако в некоторых случаях скорость обновления может быть очень низкой, граничащей с полной приостановкой этого процесса.

С помощью изотопного метода выяснена также особая роль только что синтезированных («молодых») молекул в обмене хлорофилла. Особая роль «молодых» молекул обусловлена тем, что они находятся в более реакционноспособном, более лабильном (подвижном) состоянии, чем «старые» молекулы. Причем повышенной лабильностью обладают «молодые» молекулы хлорофилла a и хлорофилла b. Об этом свидетельствуют различия в свойствах «молодых» и «старых» молекул. Например, «молодые» молекулы хлорофилла a легче экстрагируются органическими растворителями, легче теряют окраску и разрушаются при действии кислот, ультразвука или при отсутствии света, а также легче превращаются в хлорофилл b.

Биосинтез пигментов представляет собой цепь процессов, которые протекают не изолированно и самостоятельно, а находятся во взаимосвязи со всем обменом веществ и жизнедеятельностью растительного организма. Большое влияние на биосинтез пигментов оказывает также действие различных факторов внешней среды, в том числе и действие света, о чем говорилось выше. Так, образование хлорофилла возможно только при наличии кислорода в окружающей среде. Отсутствие кислорода тормозит этот процесс, как и понижение температуры. По данным Т. Н. Годнева и его сотрудников, синтез хлорофилла у некоторых вечнозеленых растений может наблюдаться при температуре не ниже -2°, а каротиноидов - не ниже -5°, в то время как способность осуществлять фотосинтез сохраняется у этих видов растений даже при - Небольшое влияние на образование хлорофилла оказывают условия минерального питания. Широко известно явление хлороза у растений (от греч. хлорос - зеленовато-желтый, бледный), когда листья бедны хлорофиллом и имеют желтоватую окраску. Наиболее часто хлороз вызывается отсутствием или недостатком в питательной среде железа, но эта связь наблюдается не всегда. Хлоротичные растения могут развиваться и при недостатке или отсутствии в окружающей среде магния, меди, серы, калия и некоторых других элементов минерального питания. Недостаток калия вызывает хлороз, так же как и избыточные количества этого элемента при недостаточно хорошем азотном питании. При недостатке азота наблюдается резкое ослабление синтеза хлорофилла. Отсутствие или недостаток магния в почве также неизбежно вызывает хлороз растений, поскольку этот элемент входит в состав молекулы хлорофилла.

Значение хлорофилла и каротина для медицины

Хлорофилл и другие пигменты независимо от их роли и значения для фотосинтеза сами по себе являются ценными органическими веществами. Очень важна близость химического состава каротина и витамина А. Каротин можно рассматривать как провитамин А, поскольку при расщеплении его молекулы пополам с присоединением кислорода образуется две молекулы этого витамина. У животных такое расщепление каротина до витамина А происходит при участии особого фермента - каротиназы, который содержится в их печени.

Все более широкое применение в медицине в последнее время находит и хлорофилл. Ценные терапевтические свойства хлорофилла, вероятно, можно объяснить тем, что по своему строению он весьма близок к красящему веществу гемоглобина крови. Поэтому нет ничего неожиданного в том, что в организме человека и животных хлорофилл содействует усиленному образованию гема гемоглобина крови, а также способствует заживлению ран. Кроме того, оказалось, что свойства хлорофилла и витаминов во многом сходны.

Основным пигментом зеленых растений является молекула хлорофилла, участвующая в процессе поглощения света. Высшие растения содержат две формы хлорофилла: хлорофилл а и хлорофилл b. Структура хлорофилла а (рис. 40) установлена Вилыптеттером и Фишером и подтверждена в 1960 г. Вудвордом, осуществившим полный синтез хлорофилла а.

В основе молекулы хлорофилла лежит плоское порфириновое кольцо, в центре которого находится ион атома магния, координационно соединенный с атомами азота порфиринового кольца.

Плоская структура порфиринового кольца обусловлена сопряженными двойными и простыми связями -электронов между атомами углерода и азота. Эти электроны «делокализованы», т. е. равномерно распределены вдоль «периферии» порфиринового кольца (выделенная точками область на рис. 40). Изменение состояния движения -электронов в кольце требует сравнительно небольшой энергии. Поэтому спектр поглощения света молекулой хлорофилла лежит в красной области. Дипольный электрический момент перехода в возбужденное состояние находится в плоскости порфиринового кольца.

Кроме порфиринового кольца молекула хлорофилла имеет длинную гидрофобную цепь - «хвост», в состав которого входят 20 углеродных атомов. Эта боковая цепь представляет собой остаток спирта фитола. Хлорофилл b отличается от хлорофилла а тем, что в последнем группа - заменена группой - СНО. Таким образом, хлорофилл b содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Спектры поглощения обеих форм хлорофилла приведены на рис. 41. Максимумы полос поглощения хлорофилла а лежат в областях длин волн К да 700 нм (красная) и К да 440 нм (фиолетовая), максимумы полос поглощения хлорофилла b - в областях длин волн 660 и 460 нм.

Максимальная интенсивность солнечного света, достигающего земной поверхности, приходится на сине-зеленую и зеленую области длин волн (450-550 нм). Оказывается, что именно в этих областях поглощение света молекулами хлорофилла минимально.

Хлорофилл а найден у всех зеленых растений и водорослей. Хлорофилл b отсутствует у многих водорослей. Эти водоросли иногда содержат другие разновидности хлорофилла: с и d. Фотосинтезирующие бактерии, не выделяющие кислород, хлорофилла а не содержат. В их состав обычно входит особый тип хлорофилла- бактериохлорофилл.

Как указывалось выше, кроме молекул хлорофилла многие фотосинтезирующие клетки содержат также пигментные молекулы,

Рис. 40. Структурные формулы хлорофилла а и хлорофилла b.

поглощающие свет в других областях спектра и придающие организмам различную окраску. Эти молекулы расширяют спектральную область света, используемую при фотосинтезе. Кроме того, каротиноиды предохраняют хлорофилл от необратимого фотоокисления кислородом.

Структурные формулы одного из каротинов и фикоцианобилина указаны на рис. 42. Каротины имеют длинные полиизопреновые цепи сопряженных двойных и одиночных связей. На каждом конце молекулы находятся циклогексановые кольца. Фикоциашшы, входящие в состав синезеленых водорослей, содержат четыре пи-рольных кольца. Они могут образовывать комплексы со специфическими белками.

На рис. 43 представлена схема первых энергетических уровней молекулы хлорофилла а. В основном состоянии молекула имеет нулевой спин. Все возбужденные состояния с нулевым спином называются синглетными (S). У молекулы возможны также возбужденные состояния со спином единица (в единицах h). Они называются триплетными (Т). Время жизни первого синглетного состояния . Время жизни нулевого триплетного состояния .

Рис. 41. Спектры поглощения света хлорофиллом а (1) и хлорофиллом b (2).

Под действием света в молекуле осуществляются только переходы в синглетные возбужденные состояния. Если молекулы хлорофилла при поглощении света переходят в возбужденные состояния с энергиями, превышающими энергию первого возбужденного состояния то вследствие безыэлучательных процессов за время 10-12 - 10-13 с они переходят в первое синглетное нозбужденное состояние отдавая избыток энергии растворителю.

Из синглегного состояния за время происходит переход в основное состояние с излучением света ( нм). Это явление называется флуоресценцией. Имеется также небольшая вероятность безызлучательного перехода молекулы из нозбужденного состояния в триплетное возбужденное состояние Из-за слабого взаимодействия спина с электромагнитной волной время жизни триплетного состояния по отношению к излучению света X я» 930 нм при переходе в основное синглетное состояние сравнительно велико . Большая длительность премени жизни триплетного состояния обусловлена маловероятным процессом изменения спина молекулы от единицы до нуля.

Растворы, содержащие молекулы пигментов только одного типа (хлорофилл b, хлорофилл а, каротиноиды и др.), при низких температурах имеют характерные спектры флуоресценции, соответствующие квантовым переходам -электронов из нижайших синлетных возбужденных состояний в основное синглетное состояние молекулы. Наряду с основным излучением наблюдается слабое, медленно спадающее и более длинноволновое излучение, соответствующее переходам с нижайших триплетных состояний этих молекул в основное синглетное состояние.

В связи с тем что электронные переходы в пигментных молекулах сопровождаются изменением многих низкочастотных колебательных состояний молекул и окружающей среды, их полосы поглощения и люминесценции имеют значительную ширину.

При исследовании флуоресценции пигментов, входящих в состав

Рис. 42. Структурные формулы фотосинтезирующих пигментов: а - бета-каратин; б - фикоцианобилин.

хлоропластов, наблюдается только флуоресценция хлорофилла а. Более коротковолновая флуоресценция хлорофилла 6 и других пигментных молекул не обнаруживается даже в том случае, когда хлоропласт освещается светом с длиной волны, совпадающей с длиной волны спектра поглощения соответствующего пигмента.

Таким образом, основная масса пигментных молекул выполняет роль светособирающих систем (антенн). Пигментные молекулы в хлоропластах образуют ансамбли упорядоченно расположенных молекул .

Отмеченные выше свойства флуоресценции хлоропластов указывают, что в таких ансамблях происходит сравнительно быстрая (10-11 - 10-12 с) миграция энергии синглетного возбуждения по молекулам пигмента к молекулам хлорофилла а.

Квантовая теория систем слабо взаимодействующих одинаковых молекул показывает , что вследствие резонансного взаимодействия между возбужденной и невозбужденной молекулами в системе возникают коллективные бестоковые возбужденные состояния - экситоны, переносящие возбуждение от одних мест системы к другим. Резонансное взаимодействие с увеличением расстояния убывает сравнительно медленно (как ) и может проявляться даже на расстояниях порядка 50 А.

Когда экситон, перемещаясь по системе пигментных молекул, достигает молекулы хлорофилла а, имеющей более низкий уровень возбуждения, он переводит ее в возбужденное состояние,

Рис. 43. Схема синглетных (S t) и триплетных (71,) энергетических уровней молекулы хлорофилла а.

Прямые отрепки соответствуют поглощению, волнистые стрелки - флуоресценции; цифры указывают длины волн в нанометрах.

отдавая избыток энергии тепловому резервуару. Такая небольшая потеря энергии исключает обратный переход энергии возбуждения с молекул хлорофилла а к пигментным светособирающим молекулам.

Молекула хлорофилла а, получившая энергию от светособирающих молекул, отдает ее в виде излучения света - флуоресценции. Это явление хорошо изучено при исследовании люминесценции молекулярных кристаллов, содержащих примесные молекулы с энергией возбуждения более низкой, чем энергия возбуждения молекул основного вещества, и называется сенсибилизированной люминесценцией.

Некоторое время считали, что молекулами, воспринимающими энергию возбуждения от светособирающих молекул, являются особые молекулы хлорофилла а. Теперь установлено (см. п. 17.2), что эту роль выполняют в хлоропластах и хроматофорах особые фотосинтезирующие реакционные центры, в состав которых входит несколько молекул хлорофилла. Эти молекулы в реакционном центре образуют своеобразный комплекс, выступающий как единое целое со своим спектром возбужденных состояний. При этом энергия нижайшего из них меньше энергии отдельной молекулы хлорофилла. Установлено, что число реакционных центров в мембране значительно меньше числа светособирающих молекул (1/400).

Фотосинтезирующие реакционные центры (ловушки экситонов) входят в состав фотосинтезирующих систем (ФС), в которых осуществляются световые реакции фотосинтеза. Фотосинтезирующие системы наряду с реакционными центрами, воспринимающими энергию света, содержат ряд других молекул - ферменты, белки, липиды, липопротеиды, которые участвуют в организации фотосинтезирующей системы и в выполнении ею световой части биохимических реакций. Фотосинтезирующие системы сравнительно жестко вмонтированы в мембраны тилакоидов.

С точки зрения исследования первичных процессов фотосинтеза на молекулярном уровне особый интерес представляет изучение организации пигментных слоев и структуры фотосинтезирующих систем, в частности изучение реакционных центров, входящих в их состав.

Важнейшую роль в процессе фотосинтеза играют зеленые пигменты - хлорофиллы. Французские ученые П.Ж. Пелетье и Ж. Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» - зеленый и «филлон» - лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях. Кроме того, известны четыре бактериохлорофилла (a, b, c и d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий имеются бактериохлорофиллы с и d, в клетках пурпурных бактерий - бактериохлорофиллы а и b.

Основными пигментами , без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий . Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде. Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового. Эмпирическая формула - C55H7205N4Mg. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам.

В хлорофилле водород карбоксильных групп замещен остатками двух спирит - метилового СН3ОН и фитола С20Н39ОН, поэтому хлорофилл является сложным эфиром.

Хлорофилл b отличается от хлорофилла а тем, что содержит на два атома водорода меньше и на один атом кислорода больше (вместо группы СН3 группа СНО). В связи с этим молекулярная масса хлорофилла а - 893 и хлорофилла b - 907. В центре молекулы хлорофилла расположен атом магния, который соединен четырьмя атомами азота пиррольных группировок. В пиррольных группировках хлорофилла имеется система чередующихся двойных и простых связей. Это N есть хромофорная группа хлорофилла , обусловливающая поглощение определённых лучей солнечного спектра и его окраску. Диаметр порфиринового ядра составляет 10 нм, а длина фитольного остатка - 2 нм. Расстояние между атомами азота пиррольных группировок в ядре хлорофилл составляет 0,25 нм. Интересно, что диаметр атома магния равен 0,24 нм. Таким образом, магний почти полностью заполняет пространство между атомами азота пиррольных группировок. Это придает ядру молекулы хлорофилла дополнительную прочность.

Одной из специфических черт строения хлорофилла является наличие в его молекуле помимо четырех гетероциклов еще одной циклической группировки из пяти углеродных атомов - циклопентанона. В циклопентановом кольце содержится кетогруппа, обладающая большой реакционной способностью . Есть данные, что в результате процесса энолизации по месту этой кетогруппы к молекуле хлорофилла присоединяется вода. Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофильными свойствами, а фитольный конец - гидрофобными. Это свойство молекулы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой.

Извлеченный из листа хлорофилл легко реагирует как с кислотами, так и со щелочами. При взаимодействии со щелочью происходит омыление хлорофилла, в результате чего образуются два спирта и щелочная соль кислоты хлорофиллина.

В интактном живом листе от хлорофилла может отщепляться фитол под воздействием фермента хлорофиллазы. При взаимодействии со слабой кислотой извлеченный хлорофилл теряет зеленый цвет, образуется соединение феофитин, у которого атом магния в центре молекулы замещен на два атома водорода.

Хлорофилл в живой интактной клетке обладает способностью к обратимому фотоокислению и фотовосстановлению . Азот пиррольных ядер может окисляться (отдавать электрон) или восстанавливаться (присоединять электрон).

Исследования показали, что свойства хлорофилла, находящегося в листе и извлеченного из листа, различны, так как в листе он находится в комплексном соединении с белком. Это доказывается следующими данными:

  • Спектр поглощения хлорофилла, находящегося в листе, иной по сравнению с извлеченным хлорофиллом.
  • Хлорофилл невозможно извлечь абсолютным спиртом из сухих листьев. Экстракция протекает успешно, только если листья увлажнить или к спирту добавить воды, которая разрушает связь между хлорофиллом и белком.
  • Выделенный из листа хлорофилл легко подвергается разрушению под влиянием самых разнообразных воздействий (повышенная кислотность, кислород и даже свет).

Между тем в листе хлорофилл достаточно устойчив ко всем перечисленным факторам. Для гемоглобина характерно постоянное соотношение - на 1 молекулу белка приходится 4 молекулы гемина. Между тем соотношение между хлорофиллом и белком различно и претерпевает изменения в зависимости от типа растений, фазы их развития, условий среды (от 3 до 10 молекул хлорофилла на 1 молекулу белка). Связь между молекулами белка и хлорофиллом осуществляется путем нестойких комплексов, образующихся при взаимодействии кислотных групп белковых молекул и азота пиррольных колец. Чем выше содержание дикарбоновых аминокислот в белке, тем лучше идет их комплексирование с хлорофиллом (Т.Н. Годнев).

Важным свойством молекул хлорофилла является их способность к взаимодействию друг с другом. Переход из мономерной в агрегированную форму возник в результате взаимодействия двух и более молекул при их близком расположении друг к другу. В процессе образования хлорофилла его состояние в живой клетке закономерно меняется. В настоящее время показано, что хлорофилл в мембранах пластид находится в виде пигментлипопротеидных комплексов с различной степенью агрегации.

Хлорофилл А против В

Растения и водоросли - это живые организмы, которые могут создавать свою собственную пищу, а животные получают свою пищу от этих растений. Этот процесс создания пищи называется фотосинтезом и использует хлорофилл. Хлорофилл является зеленым пигментом в растениях и водорослях, который по существу используется при фотосинтезе. Он поглощает свет и энергию от синей и красной частей электромагнитного спектра, но не поглощает лунку зеленой порции, которая придает растениям хлорофилл в растениях свой зеленый цвет Затем свет и энергия переносятся в реакционные центры двух фотосистем, Photosystem I и Photosystem II. Эти фотосистемы имеют реакционные центры, P680 и P700, которые поглощают и используют энергию, которую они получают от других пигментов хлорофилла. Фотосинтез использует два типа хлорофилла, хлорофилла а и б, для получения энергии. Хлорофилл А Хлорофилл а поглощает энергию от длин волн сине-фиолетового и оранжево-красного света при 675 нм. Он отражает зеленый свет, который придает хлорофиллу свой зеленый вид. Это очень важно в энергетической фазе фотосинтеза, потому что молекулы хлорофилла a необходимы до того, как фотосинтез может продолжаться. Это первичный фотосинтетический пигмент. Это реакционный центр антенной решетки, который состоит из основных белков, которые связывают хлорофилл а с каротиноидами. Организмы, в частности кислородные фотосинтезирующие, используют хлорофилл а и используют различные ферменты для биосинтеза. Хлорофилл B Хлорофилл б поглощает энергию от длин волн зеленого света при 640 нм. Это вспомогательный пигмент, который собирает энергию и передает его на хлорофилл а. Он также регулирует размер антенны и более абсорбируется, чем хлорофилл a. Хлорофилл b дополняет хлорофилл a. Его добавление к хлорофиллу а увеличивает спектр поглощения за счет увеличения диапазона длин волн и расширения спектра поглощаемого света. Когда имеется мало света, растения производят больше хлорофилла b, чем хлорофилл a, чтобы увеличить его способность к фотосинтезу. Это необходимо, потому что молекулы хлорофилла a захватывают ограниченную длину волны, поэтому вспомогательные пигменты, такие как хлорофилл b, необходимы для захвата более широкого диапазона света. Затем он передает захваченный свет от одного пигмента к другому, пока не достигнет хлорофилла а в реакционном центре. Хлорофилл а не может эффективно функционировать без помощи хлорофилла b, а хлорофилл b не может эффективно производить достаточно энергии самостоятельно. Эти два типа хлорофиллов поэтому очень важны в процессе фотосинтеза. Они работают лучше всего вместе. Резюме 1. Хлорофилл а является основным фотосинтетическим пигментом, а хлорофилл б является вспомогательным пигментом, который накапливает энергию и передает его хлорофиллу а. 2. Хлорофилл а поглощает энергию от длин волн сине-фиолетового и оранжево-красного света, а хлорофилл б поглощает энергию от длин волн зеленого света. 3. Хлорофилл а поглощает энергию при 675 нм, тогда как хлорофилл б поглощает энергию при 640 нм. 4. Хлорофилл b является более абсорбирующим, а хлорофилл a - нет. 5. Хлорофилл а является реакционным центром антенной решетки основных белков, а хлорофилл б регулирует размер антенны.