Строение и функции эпс. Строение клетки. Эндоплазматическая сеть — Гипермаркет знаний

Эндоплазматический ретикулум один из важнейших органоидов в эукариотической клетке. Его второе название эндоплазматическая сеть. ЭПС бывает двух разновидностей: гладкая (агранулярная) и шероховатая (гранулярная). Чем более активный обмен веществ в клетке, тем большее там количество ЭПС.

Строение

Это обширный лабиринт из каналов, полостей, везикул, "цистерн", которые тесно связаны и сообщаются друг с другом. Этот органоид покрыт мембраной, которая сообщается как с цитоплазмой, так и с клеточной наружной мембраной. Объем полостей различный, но все они содержат гомогенную жидкость, которая позволяет осуществлять взаимодействие между ядром клетки и внешней средой. Иногда имеются ответвления от основной сети в виде одиночных пузырьков. Шероховатая ЭПС отличается от гладкой наличием на внешней поверхности мембраны большого количества рибосом.

Функции

  • Функции агранулярной ЭПС. Она принимает участие в образовании стероидных гормонов (например, в клетках коры надпочечников). ЭПС, содержащаяся в клетках печени, участвует в разрушении некоторых гормонов, лекарственных препаратов и вредных веществ, и в процессах преобразования глюкозы, которая образуется из гликогена. Также агранулярная сеть производит фосфолипиды, необходимые для строительства мембран всех типов клеток. А в ретикулуме клеток мышечной ткани происходит депонирование ионов кальция, необходимых для сокращения мышц. Такой вид гладкой эндоплазматической сети по-другому называют саркоплазматическим ретикулумом.
  • Функции гранулярной ЭПС. Прежде всего в гранулярном ретикулуме происходит производство белков, которые впоследствии будут выведены из клетки (например, синтез продуктов секреции железистых клеток). А также в шероховатой ЭПС проходит синтез и сборка фосфолипидов и многоцепочечных белков, которые затем транспортируются в аппарат Гольджи.
  • Общими функциями, как для гладкого эндоплазматического ретикулума, так и для шероховатого является разграничительная функция. За счет этих органоидов клетка делится на компартменты (отсеки). И дополнительно эти органеллы являются транспортерами веществ из одной части клетки в другую.

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы. Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

1.Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

2.Гладкая ЭПС участвует в синтезе липидов, углеводов.

3.Транспорт органических веществ в клетку (по каналам ЭПС).

4.Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са2+. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

Цепни.

Класс ленточные черви (Cestoidea)

Болезни: свин ц – тениоз, быч цеп – тениаринхоз, эхин – эхинококкоз, карлик цепень – гименолипедоз

Широкий лентец .Diphyllobothrium latum

Заболевание: дифиллоботриоз.

Особенности: сам крупн. 10-20 м, на скоклексы 2 ботрии – присасыват щели, полов клоака на вентр стороне членика. Яйца овальные, желто-коричневой окраски.

Окончательные хозяева: человек и животные, которые питаются рыбой.Промежуточные хозяева: Пресноводные рачки (циклопы).

Пресноводные рыбы (хищные рыбы – резервуар)

Жизненный цикл:яйца-вода-корацидий-заглат циклопом-онкосфера-проник ч/з стенку киш-полость тела-процеркоид. Циклоп с финнами-преснов рыба-процеркоид проник в мышцы-плероцеркоид. Рыба с плероцеркоидом-киш-к осн хоз-марита.

Продолжительность жизни – до 25 лет. нвазионная форма: финна типа плероцеркоид.

Способ заражения: per os.Путь заражения: алиментарный (через мясо пресноводной рыбы, свежепросоленную икру).

Патогенная форма: половозрелая особь.Локализация: тонкая кишка.

Патогенное действие:Токсико-аллергическое. Продукты метаболизма половозрелой особи отравляют организм человека, сенсибилизируют его и вызывают аллергию.

Лекция 3. Вакуолярная система

План лекции

  1. Классификация компонентов вакуолярной системы
  2. Эндоплазматическая сеть. История ее изучения, морфоло­гия и функции.
  3. Комплекс Гольджи. История изучения. Морфология и функ­ции.
  4. Лизосомы. История. Внутриклеточное пищеварение.
  5. Система ядерных оболочек. Морфология и функции.
  6. Описание схемы взаимопревращений компонентов вакуоляр­ной системы.

Определение вакуолярной системы

Вакуолярная система - это система органоидов, состоящих из мем­бранных пузырей разной формы, определенным образом связан­ных друг с другом и плазматической мембраной.

Одно из существенных свойств вакуолярной системы - разделение клетки на отсеки (компартменты) - гиалоплазму и содержимое внутри мембранных отсеков.

В состав вакулярной системы входят следующие компоненты: шЭПС, глЭПС, кГ, лизосомы и СЯО.

Эндоплазматическая сеть (ЭПР)

Эндоплазматическая сеть состоит из двух разновидностей - глад­кой и шероховатой, которые отличаются отсутствием или нали­чием на поверхности мембран рибосом. Этот органоид относится к органоидам общего назначения и входит в состав цитоплазмы всех типов клеток эукариот.

Шероховатая ЭПС

Этот органоид был открыт в 1943 г. Claude методом дифференци­ального центрифугирования. При разделении клеточного гомоге­ната на фракции в центрифужных пробирках можно идентифици­ровать 3 основные фракции: надосадочную жидкость, микросо­мную и ядерную фракции.

Именно в состав микросомной фракции, которая содержит множе­ство вакуолей с разнообразным содержимым, входят компоненты вакуолярной системы.

Схема строения ЭПС гепатоцита (рис. Пунина М.Ю.)

1 – шероховатая ЭПС; 2 – гладкая ЭПС; 3 - митохондрия

В 1945 г. Porter при изучении в электронном микроскопе целых клеток куриных фибробластов обнаружил у них в зоне эндо­плазмы мелкие и крупные вакуоли и соединяющие их канальцы. Именно этот компонент клетки и был назван эндоплазматической сетью.

При помощи методов просвечивающей электронной микроскопии было установлено, что ЭПС состоит:

· из системы плоских мембранных мешков (цистерн), соеди­ненных перемычками (анастомозами).

Рис. Эндоплазматическая сеть

1 – трубочки гладкой ЭПС; 2 – цистерны гранулярной (шерохова­той) ЭПС; 3 – наружная ядерная мембрана, покрытая рибосомами; 4 – поровый комплекс; 5 – внутренняя ядерная мембрана (по Кри­стичу с изменениями).

Эти мембранные мешки, как видно на электронномикроскопиче­ских фотографиях концентрическими слоями сосредоточены во­круг ядра. Размер внутреннего отсека составляет около от 20 нм до 1 мк (1 000 нм). Количество элементов шЭПС зависит в клетках от их функции и степени дифференциации. Сосредоточение цистерн шЭПС в клетках в области вокруг ядра называется эргастоплазмой и свидетельствует об участии таких клеток в синтезе экспортного белка.

Рибосомы, прикрепленные к поверхности мембран шЭПС, могут быть единичными, так и в виде розеток (полисом). Глубина про­никновения рибосом внутрь мембран также может отличаться.

Механизм функционирования шероховатой.ЭПС

1. Функция синтеза экспортного белка. Гипотеза Блобеля и Саба­тини (1966 - 1970).

Эта функция осуществляется при участии самих мембран шЭПС и примембранного слоя гиалоплазмы, в котором сосре­доточена система, отвечающая за все этапы трансляции.

Предполагается, что на поверхности мембран шЭПС имеются специальные участки, отвечающие за узнавание концевых фрагментов молекул иРНК. Прикрепление этих молекул пред­шествует началу собственно процесса трансляции. В ходе трансляции, синтезируемые экспортные белки проникают сна­чала через канал в большой субъединице рибосомы, а затем и через мембрану. Внутри мембранного отсека эти белки накап­ливаются. Их дальнейшая судьба связана с процессами дозре­вания.

2. Сегрегация и преобразование экспортных белков.

Сущность процессов дозревания заключается в том, что у от­дельных белковых молекул при помощи специальных фермен­тов отрезается сигнальная последовательность, другие фер­менты присоединяют к ним либо радикалы, либо фрагменты углеводных и липидных молекул, в случае формирования сложных по химическому составу секретов.

В случае, если это белки мембран, то в зависимости от их по­ложения в билипидном слое (снаружи, внутри или на поверх­ности молекулы белков перемещаются из большой субъеди­ницы рибосомы на ту или иную поверхность мембраны или пронизывают ее насквозь (интегральные белки).

Схема молекулярной оргаизации шероховатой ЭПС и ее роли в процессах синтеза и вторичных преобразований белковых мо­лекул (рис. Пунина М.Ю.)

1 – мембрана; 2 – полуинтегральные белки и гликопротеиды; 3 – олигосахариды и другие углеводные компоненты на внут­ренней поверхности мембран и в полости цистерн; 4 – иРНК; 5 – гипотетический рецептор в мембране для иРНК; 6, 7 – субъе­диницы рибосом; (6 – малая, 7 – большая); 8 – неиндетифици­рованные интегральные белки мембраны, обеспечивающие прохождение синтезируемых белков через мембрану; 9 – гипо­тетические интегральные белки, обеспечивающие крепление к мембране больших субъединиц рибосом; 10 – синтезируемая белковая молекула; 11 – 13 – варианты синтеза интегральных (13), полуинтегральных белков наружного (11), и внутреннего (12) слоев мембраны; 14 – синтез белков гиалоплазмы на при­крепленной рибосоме; 15 – 17 – последовательные стадии син­теза, прохождения через мембрану и вторичных изменений экспортных белков.

В левом верхнем углу - внешний вид шероховатой ЭПС в элек­тронном микроскопе; в правом углу – типичные отношения между полисомой и мембраной шероховатой ЭПС при синтезе экспортных и полуинтегральных белков; в центре – цитоплаз­матический пул субъединиц рибосом.

Стрелки показывают направление перемещения субъединиц рибосом и синтезированных белковых молекул.

3. Внутримембранное хранение веществ.

Некоторые секреты хранятся во внутри мембранном простран­стве определенное время, по прошествии которого они упако­вываются в мелкие мембранные пузырьки, которые переносят секрет от шЭПС в зону формирования комплекса Гольджи. Так при изучении образования белковых молекул антител было установлено, что сама молекула строится за 90 сек, но снаружи клетки она оказывается только через 45 минут. То есть при секреции установлены следующие этапы: синтез белка, сегре­гация (разъединение), внутри клеточный транспорт, концен­трирование, внутриклеточное хранение, освобождение из клетки.

4. Участие в обновлении мембранных компонентов (место образо­вания новой мембраны). Гипотеза Лодиша и Ротмена (1977).

Внутренняя часть билипидного слоя мембранных цистерн шЭПС – место встраивания вновь синтезированных молекул липидов. После нарастания поверхности внутренней части би­липидного слоя избыток липидных молекул перескакивает в наружный слой билипидной поверхности из-за подвижности липидных молекул по вертикали (свойство флип-флоп).

Гладкая эндоплазматическая сеть

В отличие от шЭПС эта разновидность сети имеет два существен­ных отличия:

· мембранные пузыри имеют форму сложной системы трубочек;

· поверхность мембраны гладкая, лишена рибосом.

Схема расположения трубочек гладкой ЭПС (саркоплазматиче­ского ретикулюма) мышц.

М – митохондрии. (по Fawcett, McNutt, 1969)

Этот органоид также относится к органоидам общего назначения, но в некоторых клетках составляет основную массу цитоплазмы таких клеток. Это связано с тем, что эти клетки участвуют в обра­зовании не мембранных липидов. Примером таких клеток служат клетки коры надпочечников, специализирующихся на выработке стероидных гормонов. В цитоплазме этих клеток наблюдается сплошная масса трубочек гладкой ЭПС. Гладкая ЭПС обычно за­нимает в клетке строго определенное место: в клетках кишечника – в апикальной зоне, в клетках печени в зоне отложения гликогена, в интерстециальных клетках семенника она равномерно распреде­лена по всему объему цитоплазмы.

Происхождение гладкой ЭПС – вторичное. Этот органоид образу­ется из шЭПС в результате утери последним рибосом, либо за счет роста шЭПС в виде трубочек, лишенных рибосом..

Механизм функционирования гладкой ЭПС

1. Участие в синтезе не мембранных липидов.

Эта функция связана с секрецией этих веществ, например сте­роидных гормонов.

2. Детоксикация (внутри мембранное хранение токсических отхо­дов метаболизма).

Эта функция связана со способностью трубочек гладкой ЭПС клеток печени накапливать во внутри мембранном простран­стве ядовитых продуктов метаболизма, например некоторых лекарств (явление известное для барбитуратов).

3. Накопление двухвалентных катионов.

Эта функция характерна для L-каналов мышечных волокон. Внутри этих каналов накапливаются двухвалентные ионы Ca +2 ,которые участвую в процессах образования кальциевых мостиков между молекулами актина и миозина в процессе мы­шечного сокращения.

Что общего у гнилого яблока и головастика? Процесс гниения фруктов и процесс превращения головастика в лягушку связан с одним и тем же феноменом - автолизом. Руководят им уникальные структуры клеток - лизосомы. Крошечные лизосомы размером от 0,2 до 0,4 мкм разрушают не только другие органоиды, но даже целые ткани и органы. Они содержат от 40 до 60 разных лизирующих ферментов, под действием которых ткани буквально плавятся на глазах. О структуре и функциях наших внутренних биохимических лабораторий: лизосом, аппарата Гольджи и эндоплазматической сети, - вы узнаете в нашем уроке. Также мы поговорим о клеточных включениях - особом типе клеточных структур.

Тема: Основы цитологии

Урок: Строение клетки. Эндоплазматическая сеть. Комплекс Гольджи.

Лизосомы. Клеточные включения

Мы продолжаем изучать органоиды клетки.

Все органоиды делятся на мембранные и немембранные .

Немембранные органоиды мы рассмотрели на предыдущем занятии, напомним, что к ним относятся рибосомы, клеточный центр и органоиды движения.

Среди мембранных органоидов различают одномембранные и двумембранные .

В этой части курса мы рассмотрим одномембранные органоиды: эндоплазматическую сеть, аппарат Гольджи и лизосомы .

Кроме этого, мы рассмотрим включения - непостоянные образования клетки, которые возникают и исчезают в процессе жизнедеятельности клетки.

Эндоплазматическая сеть

Одним из самых важных открытий, сделанных с помощью электронного микроскопа, было обнаружение сложной системы мембран, пронизывающей цитоплазму всех эукариотических клеток. Эта сеть мембран в дальнейшем получила название ЭПС (эндоплазматической сети) (рис. 1) или ЭПР (эндоплазматического ретикулума). ЭПС представляет систему трубочек и полостей, пронизывающей цитоплазму клетки.

Рис. 1. Эндоплазматическая сеть

Слева - среди других органоидов клетки. Справа - отдельно выделенная

Мембраны ЭПС (рис. 2) имеют такое же строение, как и клеточная или плазматическая мембрана (плазмалемма). ЭПС занимает до 50% объема клетки. Она нигде не обрывается и не открывается в цитоплазму.

Различают гладкую ЭПС и шероховатую , или гранулярную ЭПС (рис. 2). На внутренних мембранах шероховатой ЭПС располагаются рибосомы - здесь идет синтез белков.

Рис. 2. Виды ЭПС

Шероховатая ЭПС (слева) несет на мембранах рибосомы и отвечает за синтез белка в клетке. Гладкая ЭПС (справа) не содержит рибосом и отвечает за синтез углеводов и липидов.

На поверхности гладкой ЭПС (рис. 2) идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся в трубочки и затем транспортируются к местам назначения, где депонируются или используются в биохимических процессах.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют белки для нужд организма, например, белковые гормоны эндокринной системы человека. А гладкая ЭПС - в тех клетках, которые синтезируют сахара и липиды.

В гладкой ЭПС накапливаются ионы кальция (важные для регуляции всей функций клеток и целого организма).

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) (рис. 3), впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи ().

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа. Эта структура содержится практически во всех эукариотических клетках, и представляет собой стопку уплощенных мембранных мешочков, т. н. цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи .

Рис. 3. Комплекс Гольджи

Слева - в клетке, среди других органоидов.

Справа - комплекс Гольджи с отделяющимися от него мембранными пузырьками

Во внутриклеточных цистернах накапливаются вещества, синтезированные клеткой, т. е. белки, углеводы, липиды.

В этих же цистернах вещества, поступившие из ЭПС , претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с её каналами.

Все вещества, синтезированные на мембранах ЭПС (рис. 2), переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи, где они претерпевают дальнейшие изменения.

Одна из функций комплекса Гольджи - сборка мембран. Вещества, из которых состоят мембраны - белки и липиды, как вы уже знаете, - поступают в комплекс Гольджи из ЭПС.

В полостях комплекса собираются участки мембран, из которых образуются особые мембранные пузырьки (рис. 4), они передвигаются по цитоплазме в те места, где необходима достройка мембраны.

Рис. 4. Синтез мембран в клетке комплексом Гольджи (см. видео)

В комплексе Гольджи синтезируются практически все полисахариды, необходимые для построения клеточной стенки клеток растений и грибов. Здесь они упаковываются в мембранные пузырьки, доставляются к клеточной стенке и сливаются с ней.

Таким образом, основные функция комплекса (аппарата) Гольджи - химическое превращение синтезированных в ЭПС веществ, синтез полисахаридов, упаковка и транспорт органических веществ в клетке, формирование лизосомы.

Лизосомы (рис. 5) обнаружены у большинства эукариотических организмов, но особенно много их в клетках, которые способны к фагоцитозу. Они представляют собой одномембранные мешочки, наполненные гидролитическими или пищеварительными ферментами, такими как липазы, протеазы и нуклеазы , т. е. ферменты, которые расщепляют жиры, белки и нуклеиновые кислоты.

Рис. 5. Лизосома - мембранный пузырек, содержащий гидролитические ферменты

Содержимое лизосом имеет кислую реакцию - для их ферментов характерен низкий оптимум pH. Мембраны лизосомы изолируют гидролитические ферменты, не давая им разрушать другие компоненты клетки. В клетках животных лизосомы имеют округлую форму, их диаметр - от 0,2 до 0,4 микрон.

В растительных клетках функцию лизосом выполняют крупные вакуоли. В некоторых растительных клетках, особенно погибающих, можно заметить небольшие тельца, напоминающие лизосомы.

Скопление веществ, которые клетка депонирует, использует для своих нужд, или хранит для выделения вовне, называют клеточными включениями .

Среди них зерна крахмала (запасной углевод растительного происхождения) или гликогена (запасной углевод животного происхождения), капли жира , а также гранулы белков .

Эти запасные питательные вещества располагаются в цитоплазме свободно и не отделены от неё мембраной.

Функции ЭПС

Одна из самых важных функций ЭПС - синтез липидов . Поэтому ЭПС обычно представлена в тех клетках, где интенсивно происходит этот процесс.

Как происходит синтез липидов? В клетках животных липиды синтезируются из жирных кислот и глицерина, которые поступают с пищей (в клетках растений они синтезируются из глюкозы). Синтезированные в ЭПС липиды передаются в комплекс Гольджи, где «дозревают».

ЭПС представлена в клетках коры надпочечников и в половых железах, поскольку здесь синтезируются стероиды, а стероиды - гормоны липидной природы. К стероидам относится мужской гормон тестостерон, и женский гормон эстрадиол.

Ещё одна функция ЭПС - участие в процессах детоксикации. В клетках печени шероховатая и гладкая ЭПС участвуют в процессах обезвреживания вредных веществ, поступающих в организм. ЭПС удаляет яды из нашего организма.

В мышечных клетках присутствуют особые формы ЭПС - саркоплазматический ретикулум . Саркоплазматический ретикулум - один из видов эндоплазматической сети, который присутствует в поперечнополосатой мышечной ткани. Его основной функцией является хранение ионов кальция, и введение их в саркоплазму - среду миофибрилл.

Секреторная функция комплекса Гольджи

Функцией комплекса Гольджи является транспорт и химическая модификация веществ. Особенно хорошо это видно в секреторных клетках.

В качестве примера можно привести клетки поджелудочной железы, синтезирующие ферменты панкреатического сока, который затем выходит в проток железы, открывающийся в двенадцатиперстную железу.

Исходным субстратом для ферментов служат белки, поступающие в комплекс Гольджи из ЭПС. Здесь с ними происходят биохимические превращения, они концентрируются, упаковываются в мембранные пузырьки и перемещаются к плазматической мембране секреторной клетки. Затем они выделяются наружу посредством экзоцитоза.

Ферменты поджелудочной железы секретируются в неактивной форме, чтобы они не разрушали клетку, в которой образуются. Неактивная форма фермента называется проферментом или энзимогеном . Например, фермент трипсин, образуется в неактивной форме в виде трипсиногена в поджелудочной железе и переходит в свою активную форму - трипсин в кишечнике.

Комплексом Гольджи синтезируется также важный гликопротеин - муцин . Муцин синтезируется бокаловидными клетками эпителия, слизистой оболочки желудочно-кишечного тракта и дыхательных путей. Муцин служит барьером, защищающим расположенные под ним эпителиальные клетки от разных повреждений, в первую очередь, механических.

В желудочно-кишечном тракте эта слизь защищает нежную поверхность эпителиальных клеток от действия грубого комка пищи. В дыхательных путях и желудочно-кишечном тракте муцин защищает наш организм от проникновения патогенов - бактерий и вирусов.

В клетках кончика корня растений комплекс Гольджи секретирует мукополисахаридную слизь, которая облегчает продвижение корня в почве.

В железах на листьях насекомоядных растений, росянки и жирянки (рис. 6), аппарат Гольджи производит клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу.

Рис. 6. Клейкие листья насекомоядных растений

В клетках растений комплекс Гольджи также участвует в образовании смол, камедей и восков.

Автолиз

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки.

Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку (рис. 7).

Рис. 7. Резорбция хвоста лягушки благодаря автолизу в ходе онтогенеза

Автолиз происходит в мышечной ткани, остающейся долго без работы.

Кроме этого, автолиз наблюдается у клеток после гибели, поэтому вы могли наблюдать, как продукты питания сами портятся, если они не были заморожены.

Таким образом, мы рассмотрели основные одномембранные органоиды клетки: ЭПС, комплекс Гольджи и лизосомы, выяснили их функции в процессах жизнедеятельности отдельной клетки и организма в целом. Установили связь между синтезом веществ в ЭПС, транспортом их в мембранных пузырьках в комплекс Гольджи, «дозреванием» веществ в комплексе Гольджи и выделением их из клетки при помощи мембранных пузырьков, в том числе лизосом. Также мы говорили о включениях - непостоянных структурах клетки, которые представляют собой скопления органических веществ (крахмала, гликогена, капель масла или гранул белка). Из приведенных в тексте примеров мы можем сделать вывод о том, что процессы жизнедеятельности, которые происходят на клеточном уровне, отражаются на функционировании целого организма (синтез гормонов, автолиз, накопление питательных веществ).

Домашнее задание

1. Что такое органоиды? Чем органоиды отличаются от клеточных включений?

2. Какие группы органоидов бывают в клетках животных и растений?

3. Какие органоиды относятся к одномембранным?

4. Какие функции выполняет ЭПС в клетках живых организмов? Какие виды ЭПС выделяют? С чем это связано?

5. Что такое комплекс (аппарат) Гольджи? Из чего он состоит? Каковы его функции в клетке?

6. Что такое лизосомы? Для чего они нужны? В каких клетках нашего организма они активно функционируют?

7. Как связаны друг с другом ЭПС, комплекс Гольджи и лизосомы?

8. Что такое автолиз? Когда и где он происходит?

9. Обсудите с друзьями явление автолиза. Каково его биологическое значение в онтогенезе?

2. YouTube ().

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Цитоплазма включает в себя жидкое содержимое клетки или гиалоплазму и органоиды. Плазмолемма на 80-90% состоит из воды. Плотный остаток включает в себя различные электролиты и органические вещества. С точки зрения содержания веществ и концентрации ферментов гиалоплазму можно разделить на центральную и периферическую. Содержание ферментов в периферической гиалоплазме значительно выше, кроме того в ней выше концентрация ионов. Гиалоплазма компартментализирована в основном за счет тонких филаментов. Хотя и все остальные компоненты СОСА выполняют структурную функцию. Часть органоидов, например, рибосомы, митохондрии, клеточный центр взаимодействуют с фибриллярными структурами, поэтому можно сказать, что вся цитоплазма структурно организована. Органоиды клетки делятся на мембранные и немембранные. К мембранным органоидам относятся: комплекс Гольджи, ЭПС, лизосомы, пероксисомы. К немембранным органоидам относятся: клеточный центр, рибосомы (у прокариот из органоидов присутствуют только рибосомы).

Э.П.С.

Это структурно-единая мембранная система, которая пронизывает всю клетку и которая, как предполагают, первой образовалась в процессе становления эукориотной клетки. Произошел экзоцитоз плазмалеммы, и такие клетки получили определенное преимущество, т.к. возник компартмент, в котором можно осуществлять определенные ферментативные процессы, а именно полость ЭПС. С функциональной точки зрения ЭПС можно разделить на 3 отдела:

    шероховатая или гранулярная ЭПС. Представлена уплощенными мембранными цистернами, на которых располагаются рибосомы.

    промежуточная ЭПС, так же представлена уплощенными цистернами, но на них не располагаются рибосомы

    гладкая ЭПС представлена сетью разветвленных аностомазирующих мембранных трубочек. Рибосом на мембране нет.

Функции шЭПС.

Основная функция связана с синтезом и сегрегацией белков. Это во многом определяется тем, что на мембране располагаются специальные белки рибофорины, с которыми способна взаимодействовать большая часть рибосом. Т.о. на мембране ЭПС могут идти элонгация и терминация белкового синтеза. В ряде случаев рибосомы, на которых происходит белковый синтез в гиалоплазме не доводят его до конца и вступают в так называемую трансляционную паузу, затем при помощи специальных причальных белков такие рибосомы присоединяются к мембране шЭПС и выходят из трансляционной паузы заканчивая синтез белка. Помимо рибофоринов на мембране шЭПС образуются специальный комплекс интегральных белков, который называется транслокационным комплексом. Он участвует в транспортировке определенных белков через мембрану шЭПС в ее полость. Все белки, которые синтезируются на рибосомах ЭПС можно разделить на две группы:

    белки, которые уходят в ПАК и геалоплазму

    белки, которые уходят в полость ЭПС и которые на своем конце имеют специальную пептидную последовательность, она опознается рецепторами транслокационного комплекса и в процессе прохождения белка через транслокационный комплекс отделяется.

Первый этап сигригации проходит на мембране шЭПС. В полости шЭПС белки сигрегируют на два потока:

    белки собственно ЭПС, например, рибофорины, белки транслокационного комплекса, рецепторы, ферменты. Эти белки имеют специальный аминокислотный сигнал задержки и называются резидентными белками.

    белки, которые из полости шЭПС выводятся в промежуточную ЭПС не имеют сигнала задержки и еще в полости шЭПС гликозилируются. Такие белки называются транзитными.

С внутренней стороны на мембране промежуточной ЭПС находятся рецепторы, которые опознают углеводородную сигнальную часть. За счет экзоцитоза в промежуточной ЭПС образуются мембранные пузырьки, которые содержат гликозилированные белки и рецепторы их опознающие. Эти пузырьки направляются к комплексу Гольджи.

Помимо синтеза и сегрегации белков в шЭПС осуществляются конечные этапы синтеза некоторых мембранных липидов.

Функции промежуточной ЭПС.

Заключается в отпочковывании мембранных пузырьков с помощью клатринподобных белков. Эти белки сильно увеличивают скорость экзоцитоза.

Функции гладкой ЭПС.

    на мембране гЭПС существуют ферменты за счет, которых синтезируются практически все клеточные липиды. В первую очередь это относится к фосфолипидам и церамиду. Кроме того в гладкой ЭПС локализованы ферменты, которые участвуют в синтезе холестерола, который в свою очередь является предшественником стероидных гормонов. Холестерол в основном синтезируется гепатоцитами, поэтому при различных вирусных гепатитах наблюдается гипохолесторемия. Результатом является анемия, т.к. страдают мембраны эритроцитов. В некоторых клетках например надпочечников и половых желез синтезируются стероидные гормоны, причем в надпочечниках в начале синтезируются женские половые гормоны, а затем на их основе мужские половые гормоны.

    депонирование кальция и регуляция концентрации Са в гиалоплазме. Эта функция определяется тем, что на мембране трубочек гЭПС существуют переносчики для Са, а в полости гЭПС находятся Са-связывающии белки. За счет активного транспорта с помощью Са-ого насоса он закачивается в полость ЭПС и связывается с белками. При уменьшении концентрации Са в клетке пассивным транспортом Са выводится в гиалоплазму. Эта функция особенно развита в мышечных клетках, например, в кардиомиоцитах. Транспорт Са может быть вызван активацией фосфолипазной системы. Регуляция уровня Са в клетке особенно важна в условиях Са-вой перегрузки. При избытке Са возможен Са-зависимый апоптоз. Поэтому в мембране г ЭПС существует белок, который препятствует апоптозу

    детоксикация. Выполняется в основном клетками печени, куда поступают лекарственные препараты и различные ядовитые вещества из кишечника. В клетках печени ядовитые гидрофобные вещества переводятся в неядовитые гидрофобные, при помощи специфичных оксидоредуктаз

    гладкая ЭПС участвует в метоболизме углеводов. Эта функция особенно характерна для клеток печени, мышечных клеток, клеток кишечника. В этих клетках на мембране гЭПС локализован фермент глюкоза-6-фосфатаза, который способен отщеплять фосфатный остаток от глюкозы. Глюкоза может быть выведена в кровь только после дефосфолилирования, при наследственных дефектах этого фермента наблюдается болезнь Гирке. Для этой болезни характерно накопление избытка гликогена в печени и почках, а также гипогликимия. Кроме того, образуется большое количество молочной кислоты, что приводит к развитию ацидоза.

КОМПЛЕКС ГОЛЬДЖИ.

Универсальной функцией комплекса Гольджи является то, что он участвует в:

    формировании компонентов ПАКа

    формировании секреторных гранул

    формировании лизосом

в комплексе Гольджи наблюдается сегрегация белков, которые транспортируются сюда из ЭПС. (сами белки комплекса Гольджи синтезируются на рибосомах, которые локализованы в непосредственной близости от комплекса. Эти белки имеют сигнальную последовательность и транспортируются в полость комплекса Гольджи через транслокационный комплекс.)

Мембранные пузырьки, поступающие из ЭПС, сливаются с цистерной спасения. Цистерна спасения выполняется функцию возвращения в ЭПС рецепторов и причальных белков. Белки из цистерны спасения транспортируются в соседнюю цистерну цис-отдела. Здесь происходит сегрегация белков на два потока. Часть белков фосфолилируются за счет специального фермента фосфогликозыдазы, т.е. фосфолилирование идет по углеводной части. После этого белки поступают в медиальный отдел, где происходят различные химические модификации: гликозилирование, ацетилирование, сиалирование, после чего белки поступают в транс отдел, где наблюдается частичный протеолиз белков возможны дальнейшие химические модификации, а затем белки в трансраспределительном отделе сегрегируются на три потока:

    постоянный или констутативный поток белков к ПАКу, за счет которых регинирируют компоненты плазмолеммы и гликокаликса

    поток секреторных гранул. Они могут задерживаться, либо около комплекса Гольджи, либо под плазмалеммой, это так называемый индуцируемый экзоцитоз

    с помощью этого потока из комплекса Гольджи выводятся мембранные пузырьки с фосфолилированными белками. Это поток так называемых первичных лизосом, которые затем участвуют в фагических циклах клетки. Помимо этого в комплексе Гольджи происходит синтез гликозамингликанов, синтезируются многии гликопротеины и гликолипиды, происходит окончательный синтез сфинголипидов, происходит конденсация растворенных веществ.

ЛИЗОСОМЫ.

Это универсальные органоиды эукариотной клетки, который представлен мембранными пузырьками, диаметром 0,4мкм, которые участвуют в обеспечении клетки реакций гидролиза. Все лизосомы имеют матрикс, состоящий из мукополисахаридов, к котором локализованы неактивные гидролазы. Ингибирование гидролаз осуществляется за счет их гликозилирования в ЭПС, за счет фосфолилирования в комплексе Гольджи, за счет того, что Рh матрикса не соответствует реакциям гидролиза. Функции лизосом реализуются в двух фагических циклах:

    аутофагический цикл

    гетерофагический цикл

Аутофагический цикл.

При помощи этого цикла можно:

    расщеплять старые, потерявшие функциональную активность компоненты клетки (митохондрии). Это обеспечивает физиологическую регенерацию клетки и возможность ее существования значительно дольше любую из ее структур

    расщеплять запасные питательные вещества в клетке

    расщеплять избыточное количество секреторных гранул.

Т.о. аутофагический цикл обеспечивает клетку мономерами, которые необходимы для синтеза свойственных клетке новых биополимеров. В ряде случаев, когда экзогенное питание клетки отсутствует, он становится единственным источником мономеров, т.е. клетка переходит к экзогенному питанию. При длительном голодании это приводит к лизису клетки. Выделяют 2 типа аутофагического цикла:

    макроаутофагия или типичная аутофагия. Она начинается с формирования мембранных пузырьков, в которые заключен старый органоид клетки. Такой пузырек называется аутофагосомой. Первичная лизосома, образующаяся в комплексе Гольджи и содержащая неактивные гидролазы, сливается с аутофагосомой. Процесс слияния активирует на мембране вторичной лизосомы протольные помпы или насосы. Протоны закачиваются внутрь лизосомы, что приводит к сдвигу Ph , на мембране активируется фермент кислая фосфотаза, которая отщепляет фосфатный остаток от гидролаз. Гидролазы становятся активными и начинают отщеплять сложные молекулы, и мономеры поступают в цитоплазму. С вторичной лизосомой могут сливаться аутофагасомы и первичные лизосомы пока гидролазы не потеряют свою активность, и вторичные лизосомы ни превратятся в телолизосомы. Телолизосомы либо выводятся из клетки, либо накапливаются в ней.

    микроаутофагия. В этом случае вещества, подлежащие расщеплению, поступают в первичную лизосому не в виде аутофагического пузырька, а непосредственно через мембрану лизосомы. В этом случае наблюдается фосфолилирование определенных белков первичной лизосомы.

Патологии. Причинами патологий может являться дестабилизация мембраны первичной лизосомы. Наблюдается массовый выход гидролаз в цитоплазму и неконтролируемое расщепление компонентов клетки. Таким дестабилизирующим агентом является ионизирующее облучение, токсины некоторых грибов, витамины А, Д, Е, интенсивные физические нагрузки, гипер- и гипотермия. Стрессовые факторы вызывают такой выход гидролаз, т.к. на клетки организма начинает действовать повышая количество адреналина, который дестабилизирует мембрану. Возможны варианты суперстабилизации лизосомной мембраны. В этом случае лизосомы не могут вступать в фагический цикл. При нарушении структуры ферментов лизосом наблюдается различные болезни, которые чаще всех ведут к гибели организма. Если белки в комплексе Гольджи не фосфолилируются, то гидролазы обнаруживаются не в первичных лизосомах, а в секреторных потоках, которые выводятся из клетки. Одной из патологий является У-клеточная болезнь, характерная для фибробластов, клеток соединительной ткани. Там лизосомы не содержат гидролаз. Они выводятся в плазму крови. В фибробластах накапливаются различные вещества, что приводит к развитию болезни накопления (синдром Тея-Сакса). В нейронах накапливается большое количество комплексных углеводов - гликозидов, а лизосомы занимают очень большой объем. Ребенок теряет эмоциональность, перестает улыбаться, узнавать родителей, отстает в психомоторном развитии, теряет зрение и умирает к 4-5 годам. Болезни накопления могут быть связаны с патологичным развитием лизосомных ферментов, но как правило ведут к летальному исходу. Возможны варианты нормального лизирования клеток в ходе аутофагического цикла. В основном это касается лизиса клеток у разных организмов в период эмбрионального развития. У человека аутолизу подвергаются перепонки между пальцами. У головастика аутолизу подвергается хвост. В наибольшей степени аутолизу подвергаются насекомые с полным метаморфозом.

Гетерофагический цикл.

Заключается в расщеплении веществ, поступающих в клетку из внешней среды. За счет любого из типов эндоцитоза формируется гетерофагосома, которая способна сливаться с первичной лизосомой. Весь дальнейший гетерофагический цикл осуществляется так же, как и аутофагический.

Функции гетерофагического цикла.

    Трофическая у одноклеточных

    Защитная. Характерна для нейтрофилов и макрофагов.

Существуют варианты гетерофагического цикла, при которых гидролазы выводятся из клетки во внешнюю среду. Например, простеночное пищеварение, акросомы реакция сперматозоида. Модификационного гетефагического цикла наблюдается при переломах костей, в местах переломов межотломкоквая щель заполняется хрящевой тканью, затем благодаря деятельности специальных клеток остеобластов. Хрящевая ткань разрушается и образуется костная мозоль. Патологии гетерофагического цикла являются различные иммунодефициты.

ПЕРОКСИСОМЫ.

Это универсальный мембранный органоид клетки, диаметром примерно 0,15-0,25нм. Главной функцией пероксисом является расщепление длиннорадикальных жирных кислот. Хотя в целом они могут выполнять и другие функции. Пероксисомы в клетке образуются только за счет деления материнских пероксисом, поэтому, если в клетку по каким-то причинам не попали пероксисомы, то клетка погибает из-за накопления жирных кислот. Мембрана пероксисом имеет типичное жидкостно-мозаичное строение и может увеличиваться за счет переносимых сюда специальными белками переносчиками сложных липидов и белков.

Функции.

    Расщепление жирных кислот. В пероксисомах содержаться ферменты, относящиеся к группе ферментов оксидоредуктаз, которые начинают расщепление жирных кислот с отщепления остатков уксусной кислоты и образуют внутри радикала жирной кислоты двойную связь и как побочный продукт образуется перекись водорода. Перекись расщепляется специальным ферментом каталазой до Н 2 О и О 2 . такой процесс расщепления жирных кислот получило название β-окисление, он проходит не только в пероксисомах, но и в митохондриях. В митохондриях происходит расщепление короткорадикальные кислоты. В любом случае расщепление идет с образованием остатков уксусной кислоты или ацетата. Ацетат взаимодействует с коферментов А с образованием ацетилСоА. Это вещество является ключевым продуктом метаболизма, до которого расщепляется все органические соединения. АцСоА может использоваться в энергообмене и на основе АцСоА образуются новые жирные кислоты. При нарушении β-окисления жирных кислот наблюдается Синдром Боумена-Цельвегера. Он характеризуется отсутствием пероксисом в клетках. Новорожденные рождаются с очень маленьким весом и с патологичным развитием некоторых внутренних органов, например, мозга, печени, почек. Сильно отстают в развитие, рано погибают (до 1 года), причем в клетках обнаруживаются большое количество длиннорадикальных кислот.

    Пероксисомы участвуют в детоксикации многих вредных веществ, например, спиртов, альдегидов и кислот. Эта функция характерна для клеток печени, причем пероксисомы в печени имеют более крупные размеры. Детоксикация ядов веществ происходит за счет их окисления. Например, окисление этанола проходит до Н 2 О и ацетальдегида. В пероксисомах проходит окисление 50% этанола. Образовавшийся ацетальдегид поступает в митохондрии, где из него образуется ацетилСоА. При хроническом употреблении алкоголя количество ацетилСоА в гепатоцитах резко возрастает. Это приводит к снижению β-окисления жирных кислот и к синтезу новых жирных кислот. Следовательно, начинается синтезироваться жиры, которые откладываются в клетках печени и это приводит к возникновению жирового перерождения печени (цирроз)

    Пероксисомы способны катализировать окисление уратов, т.к. в них находится фермент уратоксидаза. Однако у высших приматов и человека данный фермент неактивен, поэтому в крови циркулирует большое количество уратов в растворенном виде. Они хорошо фильтруются в почечных клубочках и выводятся с вторичной мочой. Концентрация уратов в крови способствует развитию определенных заболеваний, например, наследственные патологии метаболизма пурина приводят к увеличению концентрации уратов в десятки раз. В результате развивается подагра, которая заключается в отложении уратов в суставах и некоторых тканях, а также возникновении уратных камней в почках.