Замкнутые трофические системы. Вегетативная (автономная) нервная система. Функции вегетативной нервной системы Трофическая функция нервных клеток

Трофика нейрона. Внутри нейрона находится желеобразное вещество - нейроплазма. Тела нервных клеток выполняют трофическую функцию по отношению к отросткам, т. е. регулируют их обмен веществ. Трофическое влияние на эффекторные клетки организма с помощью химических веществ самих нервных клеток. Питательная функция глии была предположена Гольджи, исходя из структурных соотношений нервных и глиальных клеток и соотношения последних с капиллярами мозга. Отростки протоплазматических астроцитов (сосудистые ножки) тесно контактируют с базальной мембраной капилляров, покрывая до 80% их поверхности. Трофическая функция глиальных клеток осуществляется либо одним астроцитом (сосудистая ножка ножка на капилляре а другие отростки – на нейроне), либо через систему астроцит – олигодендроцит – нейрон. Показано также что глиальные клетки принимают участие в образовании гемато-энцефалического барьера, обеспечивающего, как известно, селективный перенос веществ из крови в нервную ткань. Однако, следует отметить, что существенная роль глиальных клеток в функционировании гемато-энцефалического барьера признается не всеми исследователями 27. Концепции реактивности и активности в рассмотрении функционирования нейрона.

Парадигма реактивности: нейрон, как и индивид, отвечает на стимул. С позиций традиционной парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение возбуждения по рефлекторной дуге: от рецепторов через центральные структуры к исполнительным органам. Нейрон при этом оказывается элементом, входящим в рефлекторную дугу, а его функция - обеспечением проведения возбуждения. Тогда совершенно логично рассмотреть детерминацию активности этого элемента следующим образом: ответ на стимул, подействовавший на некоторую часть поверхности нервной клетки, может распространяться дальше по клетке и действовать как стимул на другие нервные клетки. В рамках парадигмы реактивности рассмотрение нейрона вполне методологически последовательно: нейрон, как и организм, реагирует на стимулы. В качестве стимула выступает импульсация, которую нейрон получает от других клеток, в качестве реакции - следующая за синаптическим притоком импульсация данного нейрона. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей микросреды.

28. Стандартные диапазоны фоновой электроэнцефалограммы.

ЭЭГ - метод регистрации электрической активности (биопотенциалов) головного мозга через неповрежденные покровы головы (интактный метод), позволяющий судить о его физиологической зрелости, функциональном состоянии, наличии очаговых поражений, общемозговых расстройствах и их характере.

(Регистрация биопотенциалов непосредственно с обнаженного мозга называется электрокортикографией, ЭКоГ, и обычно проводится во время нейрохирургических операций).

Первым ученым, продемонстрировавшим возможность такой регистрации электрической активности головного мозга человека был Ганс Бергер (работы 1929-1938 гг).

Основными понятиями, на которые опирается характеристика ЭЭГ, являются:

Средняя частота колебаний

Максимальная амплитуда

Суммарная фоновая ЭЭГ коры и подкорковых образований мозга животных, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.

Одной из основных характеристик ЭЭГ является частота. Однако из-за ограниченных перцепторных возможностей человека при визуальном анализе ЭЭГ, применяемом в клинической электроэнцефалографии, целый ряд частот не может быть достаточно точно охарактеризован оператором, так как глаз человека выделяет только некоторые основные частотные полосы, явно присутствующие в ЭЭГ. В соответствии с возможностями ручного анализа была введена классификация частот ЭЭГ по некоторым основным диапазонам, которым присвоены названия букв греческого алфавита:

альфа - 8-13 Гц,

бета - 14-40 Гц,

тета - 4-6 Гц,

дельта - 0,5-3 Гц,

гамма - выше 40 Гц и др.).

У здорового взрослого человека при закрытых глазах регистрируется основной альфа-ритм. Это так называемая синхронизированная ЭЭГ.

При открытых глазах или при поступлении сигналов от других органов чувств происходит блокада альфа-ритма и появляются бета-волны . Это называется десинхронизацией ЭЭГ.

Тета-волны и дельта-волны в норме у бодрствующих взрослых не выявляются, они появляются только во время сна.

Для ЭЭГ подростков и детей напротив характерны более медленные и нерегулярные дельта-волны даже в бодрствующем состоянии.

В зависимости от частотного диапазона, но также и от амплитуды, формы волны, топографии и типа реакции различают ритмы ЭЭГ, которые также обозначают греческими буквами. Например, альфа-ритм , бета-ритм , гамма-ритм , дельта-ритм , тета-ритм , каппа-ритм , мю-ритм , сигма-ритм и др. Считается, что каждый такой «ритм» соответствует некоторому определённому состоянию мозга и связан с определёнными церебральными механизмами.

Один из отделов центральной нервной системы, называемый вегетативной, состоит из нескольких частей. Одна из них является симпатической нервной и морфологические признаки позволяют условно разделить ее на несколько отделов. Еще один отдел вегетативной НС - парасимпатическая нервная система. В данной статье рассмотрим, что такое трофическая функция.

О нервной системе

В жизни абсолютно любого живого организма ряд важнейших функций выполняет нервная система. Поэтому ее значимость очень велика. Нервная система сама по себе достаточно сложна и включает в себя разные отделы, имеет несколько подвидов. Каждый из них выполняет ряд определенных функций, характерных для каждого из отделов. Интересен тот факт, что само понятие симпатической нервной системы впервые было употреблено в 1732 году. В самом начале этот термин использовался для того, чтобы обозначить всю вегетативную нервную систему в целом. Однако по мере развития медицины и накопления научных знаний стало ясно, что симпатическая нервная система таит в себе более широкий пласт функций. Именно поэтому данное понятие стали использовать в отношении только одного из отделов вегетативной нервной системы. Трофическая функция нервной системы будет представлена ниже.

Симпатическая НС

Если останавливаться на конкретных значениях, то станет ясно, что для симпатической нервной системы характерны достаточно интересные функции - она ответственна за процесс расхода ресурсов организма, а также осуществляет мобилизацию его внутренних сил при возникновении экстренных ситуаций. Если возникает необходимость, симпатическая система значительно увеличивает трату энергетических ресурсов для того, чтобы организм продолжал нормальное функционирование и выполнял определенные задачи. В том случае, когда возникает разговор о том, что человеческий организм имеет скрытые возможности, подразумевается именно этот процесс. Состояние человека напрямую зависит от того, насколько симпатическая система справляется со своими задачами.

Парасимпатическая НС

Однако подобные условия вызывают большой стресс для организма, а в таком состоянии он не может долго функционировать в нормальном режиме. Тут огромное значение имеет парасимпатическая система, которая вступает в дело и позволяет восстановить и накопить ресурсы организма, что, в свою очередь, позволяет не ограничивать его возможности. позволяют человеческому организму вести нормальную жизнедеятельность в различных условиях. Они находятся в тесной взаимосвязи и являются дополнением друг друга. Но что же означает трофическая функция НС? Об этом далее.

Анатомическое устройство

Симпатическая НС имеет достаточно сложную и разветвленную структуру. Ее центральная часть расположена в спинном мозге, а периферическая связывает разнообразные нервные узлы и нервные окончания организма. Все окончания нервов симпатической системы соединяются в сплетения и концентрируются в иннервируемых тканях.

Периферическая часть системы образована разнообразными чувствительными эфферентными нейронами, имеющими специфические отростки. Данные отростки отдалены от спинного мозга и располагаются в основном в предпозвоночных и околопозвоночных узлах.

Функции симпатической системы

Как было отмечено, активизация симпатической системы происходит при попадании организма в стрессовую ситуацию. Некоторые источники называют ее реактивной симпатической нервной системой. Такое название связано с тем, что она предполагает возникновение определенной реакции организма на воздействие извне. В этом и состоит ее трофическая функция.

При возникновении стрессовой ситуации надпочечники моментально начинают выделять адреналин. Он является основным веществом, которое позволяет человеку реагировать лучше и быстрее, отвечая на стресс. Подобная ситуация может возникнуть во время физической нагрузки. Выброс адреналина позволяет лучше с ней справляться. Адреналин способствует усилению действия симпатической системы, а она, в свою очередь, предоставляет ресурсы для увеличенного потребления энергии. Сама секреция адреналина не является энергетическим ресурсом, а лишь способствует стимуляции человеческих органов и чувств.

Основная функция

Основной из функций симпатической НС является адаптационно-трофическая функция.

Рассмотрим ее более детально.

Ученые-биологи достаточно продолжительное время были убеждены в том, что исключительно соматическая нервная система обеспечивает регуляцию деятельности мышц скелетного типа. Эта убежденность была поколеблена лишь в начале 20-го века.

Известный факт: при длительной работе происходит утомление сокращений постепенно угасает, и они могут прекратиться вовсе. Работоспособность мышцы имеет свойство восстанавливаться после небольшого отдыха. Долгое время причины подобного явления были неизвестны.

В 1927 году Орбели Л. А. опытным путем установил следующее: если довести лапку лягушки до полного прекращения движений, то есть до утомления, путем длительного воздействия на двигательный нерв, а затем, не прекращая двигательной стимуляции, начать параллельно раздражать и нерв симпатической системы, работа конечности будет быстро восстановлена. Получается, подключение влияния на симпатическую систему изменяет функциональность мышцы, которая утомлена. Происходит устранение усталости и восстановление ее работоспособности. В этом и состоит трофическая функция нервных клеток.

Влияние на мышечные волокна

Ученые выяснили, что нервы симпатической системы оказывают сильное влияние на мышечные волокна, в частности, на их способность проводить электрические токи, а также на уровень возбудимости двигательного нерва. При воздействии симпатической иннервации происходит изменение состава и количества химических соединений, содержащихся в мышце и играющих немаловажную роль в осуществлении ее деятельности. К таким соединениям относят молочную кислоту, гликоген, креатин, фосфаты. В соответствии с этими данными стало возможным сделать заключение, что симпатическая система стимулирует возникновение определенных физико-химических изменений в скелетных мышцах, оказывает регулирующее воздействие на чувствительность мышцы к возникающим двигательным импульсам, которые приходят по волокнам соматической системы. Именно симпатическая система адаптирует мышечную ткань к выполнению нагрузок, которые могут возникнуть при различных обстоятельствах. Существовало мнение, что работа утомленной мышцы усиливается при воздействии симпатического нерва в силу увеличенного кровотока. Однако проведенные эксперименты не подтвердили данное мнение. Так работает трофическая

Посредством специальных исследований удалось установить, что прямая симпатическая возбуждаемость у позвоночных организмов отсутствует. Таким образом, влияние симпатического характера на мышцы скелетного типа осуществляется только через диффузию медиатора либо иных веществ, которые выделяются сосудодвигательными терминалями симпатической системы. Этот вывод может быть с легкостью подтвержден при помощи простого эксперимента. Если мышцу поместить в раствор либо перфузировать ее сосуды, а затем начать воздействие на симпатический нерв, то в растворе или в перфузате наблюдаются неустановленной природы вещества. Если эти вещества ввести в другие мышцы, то они вызывают эффект симпатической природы.

Такой механизм подтверждается также большим латентным периодом и его значительной продолжительностью до возникновения эффекта. Для появления адаптационно-трофической функции не требуется длительного времени в тех органах, которые наделены прямой симпатической раздражительностью, например, сердце и другие внутренние органы.

Подтверждающие факты

Факты, доказывающие нейротрофическую регуляцию со стороны симпатической системы, были получены при проведении различных исследований на скелетной мышечной ткани. Исследования включали в себя функциональные перегрузки, денервацию, регенерацию, перекрестное соединение нервов, которые соединены с разными типами волокон мышц. В результате исследований получен вывод о том, что трофическую функцию выполняют метаболические процессы, которые поддерживают нормальную мышечную структуру и обеспечивают ее потребности во время выполнения специфических нагрузок. Эти же способствуют восстановлению нужных ресурсов после того, как работа мышцы прекращена. Работа таких процессов обусловлена рядом биологических регуляторных веществ. Имеются доказательства, что для возникновения действия трофического характера необходима транспортировка нужных веществ из клеточного тела в исполнительный орган.

К примеру, катехоламины принимают участие в таком процессе, как осуществление трофической функции. В крови уровень энергосубстратов увеличивается, что приводит к быстрому и интенсивному влиянию на процессы метаболизма.

Заключение

Известно, что чувствительные также проявляют адаптационно-трофическое действие. Ученые установили, что в окончаниях чувствительных волокон содержатся разного рода вещества нейроактивного характера, например нейропептиды. Чаще всего встречаются Р-нейропептиды, а также пептиды, которые связаны с кальцитониновым геном. Такие пептиды после выделения из нервных окончаний способны оказывать на окружающие их ткани трофическое влияние.

Наряду с функцией передачи импульсов, вызывающих мышечные сокращения, нервные волокна и их окончания оказывают также трофическое воздействие на мышцу, т. е. участвуют в регуляции ее обмена веществ. Хорошо известно, что денервация мышцы, развивающаяся при дегенерации двигательного нерва, приводит к атрофии мышечных волокон, которая проявляется в том, что вначале уменьшается количество саркоплазмы, а затем и диаметр мышечных волокон; позднее происходит разрушение миофибрилл. Специальные исследования показали, что эта атрофия не является результатом лишь бездеятельности мышцы, потерявшей двигательную активность. Бездеятельность мышцы может быть вызвана и путем тендотомии, т. е. перерезки сухожилия. Однако, если сравнить мышцу после тендотомии и после денервации, можно убедиться, что в последнем случае в мышце развиваются качественно иные изменения ее свойств, не обнаруживающиеся при тендотомии. Наиболее ярко это проявляется в изменениях чувствительности мышцы к ацетилхолину. В нормальной и тендотомированной мышце к ацетилхолину чувствительна только постсинаптическая мембрана, в которой сосре­доточены хемовозбудимые ионные каналы, снабженные холинорецепторами. Денервация приводит к тому, что такие же каналы появляются и во внесинаптических областях мышечного волокна. В результате чувствительность денервированной мышцы к ацетил­холину резко возрастает. Указанная гиперчувствительность к ацетилхолину не форми­руется, если при помощи определенных химических реагентов затормозить белковый синтез в мышечных волокнах. Реиннервация мышцы вследствие регенерации нервных волокон приводит к исчезновению холинорецептивных каналов области внепостсинаптической мембраны. Эти данные свидетельствуют о том, что нервные волокна регулируют синтез белков, образующих хемовозбудимые холинорецепторные каналы.

В денервированной мышце резко падает также активность ряда ферментов, в частности АТФ-азы, играющей важную роль в процессе освобождения энергии, заклю­ченной в фосфатных связях АТФ. В то же время при денервации значительно усилены процессы распада белков. Это приводит к характерному для атрофии постепенному уменьшению массы мышечной ткани.

Все дегенеративные изменения в денервированной мышце начинаются тем раньше, чем на меньшем расстоянии от мышцы перерезают двигательный нерв. Это позволяет предположить, что определенные вещества («трофические агенты»), вырабатываемые в нервных клетках, продвигаются по нервным волокнам от проксимальных участков к дистальным и выделяются нервными окончаниями. Чем больший отрезок нерва оста­ется соединенным с мышцей, тем дольше она получает важные для ее обмена вещества. Перемещение этих веществ осуществляется благодаря движению нейроплазмы, скорость которого 1-2 мм/ч.

Важную роль в осуществлении трофических влияний нерва играет ацетилхолин, секретируемый нервными окончаниями как в покое, так особенно при возбуждении. Имеются основания счи­тать, что ацетилхолин и продукты его расщепления холинэстеразой - холин и уксусная кислота - участвуют в обмене веществ мышцы, оказывая активирующее влияние на определенные ферментные системы. Так, при введении ацетилхолина в денервированную мышцу кролика резко увеличивается распад аденозинтрифосфата, креатинфосфата и гликогена во время тетануса, вызванного прямым электрическим раздражением этой мышцы.

Из нервных окончаний выделяются вещества, которые оказывают специфическое влияние на синтез белков мышечного волокна. Об этом свидетельствуют опыты с пере­крестным сшиванием двигательных нервов, иннервирующих быстрые и медленные скелетные мышцы. При таком сшивании периферические отрезки нервов и их окончания в мышце дегенерируют, а по их путям в мышцу прорастают новые волокна из централь­ных отрезков нервов. Вскоре после того, как эти волокна образуют двигательные оконча­ния, происходит отчетливая перестройка функциональных свойств мышц. Мышцы, кото­рые ранее были быстрыми, теперь становятся медленными, а те, которые были медлен­ными, становятся быстрыми. При такой перестройке изменяется активность АТФ-азы их сократительного белка миозина: в бывших быстрых мышцах она резко падает, а в медленных возрастает. Соответственно в первых скорость распада АТФ увеличивается, а во вторых - уменьшается. Изменяются также свойства ионных каналов клеточной мембраны.

Трофическое влияние на скелетную мышцу оказывают и волокна симпатической нервной системы, окончания которых высвобождают норадреналин.

ОСОБЕННОСТИ НЕРВНО-МЫШЕЧНОЙ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ В ГЛАДКИХ МЫШЦАХ

Механизм передачи возбуждения с двигательного нервного волокна на волокна гладкой мышцы в принципе сходен с механизмом нервно-мышечной передачи в скелетной мускулатуре. Различия касаются лишь химической природы медиатора и особенностей суммации постсинаптических потенциалов.

Во всех скелетных мышцах возбуждающим медиатором является ацетилхолин. В гладких мышцах передача возбуждения в нервных окончаниях осуществляется при помощи разных медиаторов. Так, для гладких мышц желудочно-кишечного тракта возбуждающим медиатором является ацетилхолин, а для гладких мышц кровеносных сосудов - норадреналин.

Порция медиатора, высвобождаемая нервным окончанием в ответ на одиночный нервный импульс, в большинстве случаев оказывается недостаточной для критической деполяризации мембраны гладкомышечной клетки. Критическая деполяризация проис­ходит только при поступлении к нервному окончанию нескольких следующих друг за другом импульсов. Тогда одиночные возбуждающие постсинаптические потенциалы суммируются (рис. 57) и в момент, когда их сумма достигает пороговой величины, возникает потенциал действия.

В скелетном мышечном волокне частота следования потенциалов действия соответ­ствует частоте ритмического раздражения двигательного нерва. В отличие от этого в гладких мышцах такое соответствие нарушается уже при частотах 7-15 имп/с. Если же частота стимуляции превышает 50 имп/с, возникает торможение типа пессимального.

Тормозные синапсы в гладких мышцах. Раздражение некоторых нервных волокон, иннервирующих гладкие мышцы, может вызывать их торможение, а не возбуждение. Нервные импульсы, приходящие в определенные нервные окончания, высвобождают тормозной медиатор.

Воздействуя на постсинаптическую мембрану, тормозной медиатор взаимодейст­вует с хемовозбудимыми каналами, обладающими преимущественной проницаемостью для ионов К + . Выходящий поток калия через эти каналы вызывает гиперполяризацию постсинаптической мембраны, проявляющуюся в форме «тормозного постсинаптического потенциала», подобного тому, который наблюдается в тормозных синапсах нейронов в ЦНС.

При ритмическом раздражении тормозных нервных волокон тормозные постсинап­тические потенциалы суммируются друг с другом, причем эта суммация оказывается наиболее эффективной в диапазоне частот 5-25 имп/с (рис. 58).

Если раздражение тормозящего нерва несколько предшествует стимуляции акти­вирующего нерва, то возбуждающий постсинаптический потенциал, вызываемый по-




следним, ослабляется и может оказаться недостаточным для критической деполяризации мембраны. Раздражение тормозного нерва на фоне спонтанной активности мышцы угнетает генерацию потенциалов действия и, следовательно, приводит к прекращению ее сокращений.

Роль тормозного медиатора в гладких мышцах, возбуждаемых ацетилхолином (например, кишечника, бронхов), исполняет норадреналин. Наоборот, в мышечных клетках сфинктера мочевого пузыря и некоторых других гладких мышцах, для которых возбуждающим медиатором является норадреналин, тормозным медиатором служит ацетилхолин. Последний оказывает тормозящее действие и на клетки водителя ритма сердца.

В скелетных мышцах нервно-мышечная передача, осуществляемая при помощи ацетилхолина, блокируется препаратами кураре, обладающими большим сродством к холинорецепторам. В гладких мышцах холинорецептор имеет иную химическую струк­туру, чем в скелетных, поэтому она блокируется не препаратами кураре, а атропином.

В тех гладких мышцах, в которых медиатором служит норадреналин, хемовозбудимые каналы снабжены адренорецепторами. Различают два основных вида адренорецепторов: а-адренорецепторы. и (b-адренорецепторы, которые блокируются различными химическими соединениями - адреноблокаторами.

ЗАКЛЮЧЕНИЕ

К возбудимым тканям кроме нервной и мышечной относится и железистая ткань, но механизмы возбуждения клеток желез внешней секреции несколько отличны от таковых у нервных и мышечных.

Как показали микроэлектродные исследования мембрана секреторных клеток в состоянии покоя является поляризованной, причем наружная поверхность ее заряжена положительно, а внутренняя - отрицательно. Разность потенциалов составляет 30- 40 мв. При стимуляции секреторных нервов, иннервирующих железу, возникает не деполяризация, а гиперполяризация мембраны и разность потенциалов достигает 50-60 мв. Предполагают, что это происходит вследствие нагнетания С1~ и дру­гих отрицательных ионов в клетку. Под влиянием электростатических сил в клетку вслед за этим начинают поступать положительные ионы, что приводит к повышению осмотического давления, поступлению в клетку воды, увеличению гидростатического давления и набуханию клетки. В результате возникает выброс секрета из клетки в просвет железы.

Выброс секрета может стимулироваться не только нервными, но и химическими (гуморальными) влияниями. Здесь, как и везде в организме, регуляция функций осу­ществляется двумя способами - нервным и гуморальным.

Нервный импульс представляет собой наиболее быстрый способ передачи информа­ции в организме. Поэтому в процессе эволюции в тех случаях, когда была необходима большая скорость реакций, когда от быстроты ответных реакций зависело само сущест­вование организма, этот способ передачи сигналов стал основным.

В области нервных окончаний - в синаптических щелях нервный импульс, как правило, вызывает выделение медиатора и, таким образом, взаимодействие между клетками остается по существу химическим. При этом вместо медленного распростра­нения химического вещества с током жидкости (с движущейся кровью, лимфой, тканевой жидкостью и т. д.) в нервной системе с большой скоростью распространяется сигнал к выделению биологически активного вещества (медиатора) в области нервных оконча­ний (на месте). Все это резко повысило быстроту ответных реакций организма, сохранив по существу принцип химического взаимодействия между клетками. Вместе с тем в ряде случаев, когда при клеточном взаимодействии необходима еще более быстрая и притом всегда однозначная реакция, межклеточная передача сигнала обеспечивается прямым электрическим взаимодействием клеток. Такой тип связи наблюдается, например, при взаимодействии клеток миокарда, а также некоторых электрических синапсов ЦНС, получивших название эфапсов.

Межклеточные связи сводятся не только к электрическим взаимодействиям или влияниям медиаторов. Химическая взаимосвязь между клетками является более слож­ной. Клетки органов и тканей вырабатывают ряд специфических химических веществ, действующих на другие клетки и вызывающих не только включение и выключение (или усиление или ослабление) функции, но и изменение интенсивности обмена веществ и процессов синтеза клеткой специфических белков. Механизмы всех этих рефлекторных влияний и межклеточных взаимодействий подробно рассмотрены во втором разделе учебника.

Трофическая функция нервной системы проявляется в ее регулирующем влиянии на обмен веществ и питание тканей и органов.

Первые указания на трофическую функцию нервной системы основывались на результатах экспериментов с перерезкой нервов, которая нередко вызывает различные нарушения в денервированных тканях. Эти факты находятся в полном соответствии с многочисленными клиническими наблюдениями патологических изменений в коже, костях и внутренних органах, которые иногда возникают у больных при поражениях нервов и нервных центров (рис. 187 ).

Учение о трофической функции нервной системы было развито И. П. Павловым. Истоком его представлений в этой области явилось открытие им нервов, усиливающих и ослабляющих сокращения сердечной мышцы.

Действие этих нервов было объяснено влиянием их на обмен вещест и основные физиологические свойства сердечной мышцы. В дальнейшем И. П. Павлов пришел к убеждению, что не только сердце, но и все другие органы и ткани снабжены трофическими нервами, влияющими «жизненный химизм». Эти нервы передают импульсы к периферическим органам, являясь эффекторными путями трофических рефлексов.

Трофические нервы, действуя на обмен веществ, изменяют тем самым основные физиологические свойства тканей: их возбудимость, проводимость, работоспособность.

О наличии трофического влияния нервной системы свидетельствуют опыты, показавшие, что раздражение симпатических нервов влияет на окислительно-восстановительные процессь в мышце, на тканевое дыхание, физико-химические, в частности упруговязкие, свойства мышечной ткани, ферментативную активность и обмен аденозинтрифосфорной кислоты, имеющей столь важную роль в химической динамике мышечного сокращения.

Важную роль в осуществлении трофических влияний на ткани оказывают и афферентные нервные волокна. В наиболее четкой форме об этом свидетельствуют опыты с перерезкой тройничного нерва или разрушением гассерова узла, где располагаются тела рецепторных нейронов, отростки которых образуют этот нерв. В результате подобных опытов возникают язвы на денервированной роговичной оболочке глаза.

Согласно исследованиям А. В. Лебединского, причиной изъязвления роговичной оболочки после перерезки тройничного нерва является нарушение процесса регенерации, связанное с торможением митотической активности клеток, отчего постоянно происходящее разрушение клеток компенсируется образованием новых. Гистохимические исследования показали, что в основе торможения митотической активности, наступает сразу же после денервации ткани, лежат глубокие изменения клеточного обмена, в частности распад нуклеиновых соединений. Механизм трофического влияния рецепторных нейронов пока не ясен - допускается существование каких-то биологически активных веществ, секретируемых в области рецепторов.

Обширные исследования, демонстрирующие трофическую роль нервной системы и трофических рефлексов, бы проведены А. Д. Сперанским. Им показано, что перерезка седалищного нерва и введение в его центральный отрезок раздражающих веществ, например желчи или слабого раствора формалина, ведут к развитию долго не заживающих язв и к гангренозному распаду тканей не только на соответствующей конечности, но нередко также в отдаленных участках тела, не иннервированных поврежденным нервом, например в желудке и кинечнике.

В осуществлении трофических влияний на организм принимает участие каждый отдел центральной нервной системы, но особо важная принадлежит гипоталамусу, где находятся центры регуляции обмена веществ, и коре больших полушарий головного мозга.

Роль гипоталамуса демонстрируется многочисленными экспериментами А. Д. Сперанского. Так, наложение на турецкое седло основной кости черепа стеклянного шарика величиной с горошину, вызывая хроническое раздражение ядер промежуточного мозга (гипоталамуса), к развитию тяжелых трофических язв на коже и в пищеварительном тракте (рис. 188 ).

Клинические наблюдения над больными с поражениями гипоталамуса подтверждают данные экспериментов и показывают, что при этом развиваются расстройства тканевого обмена веществ - дистрофии и происходит нарушения структуры органов и тканей.

Трофические расстройства у животных наблюдаются и при удалении коры больших полушарий головного мозга (Э. А. Асратян и др.). Значение коры больших полушарий в трофике тканей было показано М. К. Петровой, которая искусственно создавала трудные условия для высшей нервной деятельности животного и отмечала при этом появление трофических нарушений.

Решение многих задач на Земле и за ее пределами требует создания искусственных, полностью или почти полностью замкнутых трофических систем или даже


небольших биосфер. В таких системах с участием организованных в трофические цепи организмов различных видов и должен происходить круговорот веществ, как правило, для поддержания жизни больших и малых сообществ людей или животных. Формирование искусственных замкнутых трофических систем и искусственных микробиосфер имеет непосредственное прикладное значение при освоении космического пространства, мирового океана и пр.

Проблема создания замкнутых трофических систем, в особенности необходимых при длительных космических полетах, давно волнует исследователей и мыслителей. По этому поводу были развиты многие фундаментальные идеи. В отношении таких конструируемых человеком систем были выдвинуты важные, хотя в ряде случаев и нереальные требования. Речь идет о том, что трофические системы должны быть в высокой степени продуктивными, надежными, должны обладать высокими скоростями и полнотой дезактивации токсических компонентов. Ясно, что реализовать такую систему исключительно трудно. Действительно, высказывались сомнения о возможности конструирования безопасной и надежной экосистемы (обзор: Odum, 1986). Тем не менее следует попытаться хотя бы определить максимальную емкость трофической системы, образно говоря, выяснить, каким должен быть маленький остров, пригодный для жизни Робинзона Крузо, если он будет накрыт прозрачным, но непроницаемым колпаком.

В качестве примера можно привести недавно разработанную модель искусственной биосферы (биосфера II), которая является стабильной замкнутой системой и необходима для жизни в различных областях космического пространства, в том числе на Луне и Марсе (обзор: Allen, Nelson, 1986). Она должна моделировать условия жизни на Земле, для чего следует хорошо знать природные технологии нашей планеты. Кроме того, такая биосфера должна содержать инженерные, биологические, энергетические, информационные открытые системы, живые системы, накапливающие свободную энергию, и т. д. Как и биосфера, искусственная биосфера должна включать в себя подлинную воду, воздух, скалы, землю, растительность и т. д. Она должна моделировать джунгли, пустыни, саванну, океан, болота, интенсивное земледелие и т. д., напоминающие родину человека (рис. 1.8). При этом оптимальное отношение искусственного океана и поверхности суши должно состав-


Рис. 1.8. Поперечный срез искусственной биосферы II (по: Allen, Nelson, 1986).

лять не 70:30, как на Земле, а 15:85. Однако океан в искусственной биосфере должен быть по крайней море в 10 раз более эффективным, чем настоящий.

Недавно эти же исследователи (Allen, Nelson, 1986) представили описание модельного комплекса связанных искусственных биосфер, разработанных для продолжительной жизни 64-80 человек на Марсе. Каждая из таких 4 биосфер, радиально расположенных по отношению к так называемому техническому центру, служит жизненным пространством для 6-10 человек. В техническом центре находится резервный океан для смягчения окружающей среды и поддержания замкнутой системы в целом. Существуют также биологическая, транспортная, горная и оперативная группы, а также госпиталь для визитеров с Земли, Луны или других частей Марса.

Конкретные проблемы питания в космосе при длительных полетах выходят за пределы этой книги. Тем не менее следует сказать, что при длительных полетах в космическом аппарате создается микромир, изолированный от привычной для человека среды на долгое, а в некоторых случаях и на неопределенно долгое время. Особенности этого микромира, и в частности особенности его трофики, во многом определяют существование системы в целом. По всей вероятности, одной из самых важных ступеней биотического круговорота служит деградация продуктов жизнедеятельности. Значение процессов деградации часто недооценивается. В частности, при обсуждении проблемы пищевых ресурсов человек традиционно рассматривается как высшее и конечное звено трофической цепи (обзоры: Odum, 1986; Biotechnology..., 1989, и др.). Между тем такая постановка проблемы уже привела к формированию серьезных экологических дефектов, так как экологическая система может быть устойчивой лишь при сочетании эффективного поступления и расхода веществ. Примеры этому весьма многочисленны. К одному из них относится драматический эпизод в Австралии, где произошло разрушение растительных покровов пометом овец и коров из-за отсутствия жуков-навозников.

Во всех случаях проблемы деградации продуктов жизнедеятельности и элиминации самых ослабленных членов популяции чрезвычайно важны. Недавно развиваемая точка зрения неожиданно получила подтверждение. При моделировании длительного межпланетного полета экипажа, состоящего из 10 человек, калифорнийские исследователи обнаружили, что круговорот


веществ значительно улучшается, если в систему, включающую человека, растения, водоросли, бактерии и т. д., введены две козы. Улучшение в этой системе циркуляции веществ достигается в некоторой степени за счет появления в рационе молока и, следовательно, дополнительных полноценных пищевых компонентов (в том числе белков), но в значительно большей степени благодаря ускорению процессов деградации растительных остатков в желудочно-кишечном тракте коз. Понимание трофической системы как динамических циклов, а не цепей или пирамид с начальными и конечными звеньями, по-видимому, будет способствовать не только более правильному отражению действительности, но и более разумным действиям, по крайней мере уменьшающим вредное влияние на окружающую среду.

По всей вероятности, при создании искусственных биосфер в дальнейшем также могут быть обнаружены многие интересные феномены, так как мы еще не знаем всех способов формирования минимального, но уже удовлетворительного трофического цикла. Существует ряд указаний на то, что в небольшой по численности группе людей бактериальная популяция желудочно-кишечного тракта может быть неустойчивой. Со временем она будет беднеть, особенно если будут применяться какие-либо вмешательства лечебного характера с использованием антибиотиков. Поэтому для восстановления кишечной микрофлоры космических экипажей было бы весьма целесообразно иметь некоторый банк бактерий. Кроме того, при длительных космических полетах не могут быть исключены мутации растений и бактерий, входящих в трофический цикл. Это может приводить к серьезным нарушениям свойств соответствующих организмов и их биологической роли. Эти обстоятельства необходимо иметь в виду, так как, по всей вероятности, трофическая система (искусственная микротрофосфера) космического корабля должна быть не только достаточно современной, но и гибкой, что сможет обеспечить ее определенные изменения. В этом плане обращает на себя внимание оптимистическое предсказание, что уже в XXI в. миллионы человек смогут жить в космических поселениях (O"Neill, 1977) (см.также гл. 5).