Из чего состоят гладкие мышцы. Поперечнополосатые мышцы. Строение поперечно-полосатых мышц

Мелкие насекомые есть практически в любой квартире, даже самой чистой и убранной. Не всегда эти «соседи» вредны и опасны, иногда их бывает так мало, что их вообще не видно, но практика показывает, что того или иного представителя этой энтомофауны можно найти практически в любом жилом помещении.

На заметку

Интересно отметить, что самые маленькие насекомые в квартире могут по количеству особей значительно превосходить тех же тараканов, но при этом в силу своего небольшого размера не обращать на себя внимания.

Поэтому если вы регулярно встречаете в своей квартире «непонятных» маленьких насекомых, не стоит пренебрежительно относиться к этому факту. Хотя бы спросите себя: а чем они питаются, где прячутся, с какой скоростью размножаются…

При этом те же муравьи узнаваемы всеми, и отдельно помогать читателю в их определении нет смысла. Поэтому мы остановимся на тех мелких насекомых, которых знают далеко не все.

Чешуйницы: безвредные статисты

Чешуйниц некоторые ученые считают самыми древними из существующих сегодня на планете насекомых. Они мало изменились за многие миллионы лет эволюции и очень сильно напоминают предков всех современных насекомых.

На фото - сахарная чешуйница:

А здесь - термобия домашняя:

Питаются чешуйницы различными органическими остатками, которые находят в пыли и щелях, могут поедать бумагу, хлебные и сахарные крошки. Вреда они не причиняют, а для избавления от них достаточно уничтожать замеченных на стенах особей.

Мелкие виды жуков

К мелким домашним жукам относятся кожееды, точильщики, хрущаки. Они повреждают различные продукты, могут питаться бумагой и портить книги. Кожееды также повреждают шубы и шерстяную одежду.

На фотографии - хлебный точильщик, одно из самых маленьких насекомых в квартире:

Этот жук достигает 1,5 мм в длину и во взрослом состоянии не питается, хотя проделывает ходы во многих продуктах, повреждая их. Зато его личинка питается практически всем, включая бумагу и волокна полусинтетической одежды.

Хлеб, поврежденный личинками точильщика, становится ядовитым для человека. Употреблять его в пищу нельзя!

Очень маленькие насекомые, тоже нередко встречающиеся в квартире - жуки-кожееды, способные делать дырки в шубах и мехах, «стричь» ковры и поедать переплеты старых книг:

Всех указанных выше мелких жуков бывает довольно сложно вывести из квартиры. Если их личинки завелись в продуктах, все запасы нужно выкинуть, а тумбочки и полки обработать инсектицидными средствами. В шкафах и на книжных полках вещи и предметы обрабатываются аэрозольными инсектицидами, а после здесь полезно разместить секции от моли, вполне эффективные и от жуков.

Блохи

Ниже на фотографии показана взрослая особь книжной вши (книжный сеноед):

Эти насекомые редко образуют крупные колонии. Даже небольшая группа их издает отчетливо слышимые тикающие звуки, тем самым выдавая свое присутствие.

Борются с книжными вшами, развешивая фумигационные средства возле полок с книгами и зоологическими или ботаническими коллекциями.

Ногохвостки – враги домашних растений

Ногохвостка - это маленькое белое насекомое, в квартире поселяющееся в земле в цветочных горшках и питающееся органикой. При массовом размножении ногохвостки могут сильно повреждать корни растений.

«Никак не пойму, что это за напасть такая в цветочных горшках. Какие-то букашки белого цвета, крошечные, но их так много, что земли не видно. Пересаживала фиалки и обнаружила, что во всех горшках они есть. Скажите, что это за насекомые, опасны ли они?»

Тамара, Москва

На фото представлена ногохвостка при большом увеличении:

А ниже - вынутый из горшка ком земли, зараженной ногохвостками:

Этих насекомых можно потравить обычными средствами против огородных вредителей - Актарой или Карбофосом. Можно также раскладывать на поверхности земли куски картофеля и раз в несколько дней собирать на нем насекомых.

Белокрылки

Белокрылки тоже являются вредителями растений, которые, в отличие от ногохвосток, поражают листья и стебли. Эти насекомые легко узнаются по светлым крыльям.

На фото - табачная белокрылка:

А здесь - белокрылка капустная:

Если в квартире появились эти маленькие насекомые, растения сразу же нужно обрабатывать спиртовым настоем календулы.

Белокрылки очень быстро размножаются и на всех стадиях развития сосут сок растений. Большое количество их может стать причиной гибели куста. При массовом заражении их следует травить Карбофосом или Актарой.

Бабочницы

Эти мелкие насекомые с прозрачными крыльями в квартире обычно появляются в ванной или туалете. Бабочницы - небольшие мухи с крыльями, окаймленными темной бахромой. Они хорошо узнаваемы благодаря особой форме крыльев.

На фото представлена обыкновенная бабочница (Psychodidae):

Личинки бабочниц развиваются в мусоре, в подвалах и канализации, а взрослые мухи могут разлетаться по всем квартирам, откладывая яйца в мусорные ведра и пыль в шкафах.

Иногда в квартире можно заметить очень мелких насекомых, отдаленно похожих на тараканов или клопов. Это могут быть их личинки раннего возраста (нимфы), иногда имеющие полупрозрачный хитиновый покров.

На фото показан недавно полинявший рыжий таракан, который выглядит сразу после линьки практически белым:

А так выглядит личинка постельного клопа:

Такие личинки могут проникать из соседских квартир по вентиляционным ходам или через двери, расселяясь или убегая от травли. Если такие насекомые встречаются в единичных экземплярах, их достаточно просто уничтожать. При массовой же зараженности помещения они встречаются так же часто, как и взрослые насекомые, в этом случае следует провести тщательную дезинсекцию всего помещения.

Наглядный пример того, как маленькие насекомые в квартире могут серьезно портить жизнь

Как выбрать службу по уничтожению насекомых

Гладкие мышцы представлены в стенках органов пищеварительного канала, бронхов, кровеносных и лимфатических сосудов, мочевого пузыря, в матке, а также в радужной оболочке глаза, в цилиарной мышце, коже и железах. В отличие от поперечнополосатых мышц они не являются отдельными мышцами, а составляют только часть органов. Гладкие мышечные клетки имеют удлиненную веретенообразную или лентовидную форму с заостренными концами. Их длина у человека обычно бывает около 20 мкм. Наибольшей длины (до 500 мкм) достигают гладкие мышечные клетки в стенке беременной матки человека. В средней части клетки находится палочковидное ядро, а в цитоплазме вдоль всей клетки параллельно друг другу проходят тончайшие совершенно однородные миофибриллы. Поэтому клетка не имеет поперечной исчерченности. Более толстые миофибриллы расположены в наружных слоях клетки. Они называются пограничными и обладают одноосным двойным лучепреломлением. В электронном микроскопе видно, что миофибриллы являются пучками протофибрилл и обладают поперечной исчерченностью, не видимой в световом микроскопе. Гладкие мышечные клетки могут регенерировать путем деления (митоза). В них содержится разновидность актомиозина - тоноактомиозин. Между гладкими мышечными клетками имеются такие же участки контакта мембран, или нексусы, как и между сердечными, по которым, как предполагается, распространяется возбуждение и торможение с одних гладких мышечных клеток на другие.

В гладких мышцах возбуждение распространяется медленно Сокращения гладкой мышцы вызываются более сильными и более продолжительными раздражениями, чем скелетной. Латентный период ее сокращения продолжается несколько секунд. Гладкие мышцы сокращаются значительно медленнее скелетных. Так, период сокращения гладкой мышцы в желудке лягушки равен 15-20 с. Сокращения гладких мышц могут длиться многие минуты и даже часы. В отличие от скелетных мышц сокращения гладких мышц тонические. Гладкие мышцы способны при чрезвычайно малой затрате веществ и энергии долго находиться в состоянии тонического напряжения. Например, гладкие мышцы сфинктеров пищеварительного канала, мочевого пузыря, желчного пузыря, матки и других органов находятся в тонусе в течение десятков минут и многих часов. Гладкая мускулатура стенок кровеносных сосудов высших позвоночных животных остается в тонусе в течение всей жизни.

Существует прямая зависимость между частотой импульсов, возникающих в мышце, и уровнем ее напряжения. Чем больше частота, тем до известного предела больше тонус вследствие суммации напряжений неодновременно напрягающихся мышечных волокон.

Гладкие мышцы обладают тастичностью - способностью сохранять свою длину при растяжении без изменения напряжения в отличие от скелетных, которые при растяжении напряжены.

В отличие от скелетных мышц многие гладкие мышцы обладают автоматизмом. Они сокращаются под влиянием местных рефлекторных механизмов, например мейснеровского и ауэрбаховского сплетений в пищеварительном канале, или химических веществ, поступающих в кровь, например ацетилхолина, норадреналина и адреналина. Автоматические сокращения гладких мышц усиливаются или тормозятся под влиянием нервных импульсов, поступающих из нервной системы. Следовательно, в отличие от скелетных мышц существуют специальные тормозные нервы, которые прекращают сокращение и вызывают расслабление гладких мышц. Некоторые гладкие мышцы, имеющие большое количество нервных окончаний, не обладают автоматизмом, например сфинктер зрачка, мигательная перепонка кошки.

Гладкие мышцы могут сильно укорачиваться, значительно больше, чем скелетные. Одиночное раздражение может вызвать сокращение гладкой мышцы на 45%, а максимальное сокращение при частом ритме раздражения может достигать 60-75%.

Гладкая мышечная ткань развивается также из мезодермы (возникает из мезенхимы); она состоит из отдельных сильно вытянутых клеток веретенообразной формы, значительно меньшего размера по сравнению с волокнами поперечнополосатых мышц. Их длина колеблется от 20 до 500 μ, а ширина - от 4 до 7 μ. Как правило, эти клетки обладают одним лежащим в центре клетки удлиненной формы ядром. В протоплазме клетки в продольном направлении проходят многочисленные и очень тонкие миофибриллы, которые поперечной исчерченности не имеют и без особой обработки совершенно незаметны. Каждая гладкая мышечная клетка одета тончайшей соединительнотканной оболочкой. Этими оболочками соседние клетки связаны между собой. В отличие от поперечнополосатых волокон, расположенных почти во всю длину скелетной мышцы, на протяжении любого гладкомышечного комплекса встречается значительное число клеток, расположенных в одну линию.

Гладкие мышечные клетки встречаются в организме или разбросанными поодиночке в соединительной ткани, или связанными в мышечные комплексы различной величины.

В последнем случае каждая мышечная клетка бывает также окружена со всех сторон межклеточным веществом, пронизанным тончайшими фибриллами, количество которых может быть весьма различно. В межклеточном веществе обнаруживаются и тончайшие сети эластических волоконец.

Гладкие мышечные клетки органов объединяются в мышечные пучки. Во многих случаях (мочевые пути, матка и др.) эти пучки ветвятся и сливаются с другими пучками, образуя различной плотности поверхностные сети. Если же большое количество пучков располагается тесно, то образуется плотная мышечная оболочка (например, желудочно-кишечного тракта). Кровоснабжение гладких мышц осуществляется через сосуды, которые проходят в больших соединительнотканных прослойках между пучками; капилляры проникают между волокнами каждого пучка и, разветвляясь вдоль него, образуют густую капиллярную сеть. Гладкомышечная ткань содержит также лимфатические сосуды. Гладкие мышцы иннервируются волокнами вегетативной нервной системы. Гладкие мышечные клетки в отличие от волокон поперечнополосатых мышц производят медленные, длительные сокращения. Они способны работать долго и с большой силой. Например, мышечные стенки матки при родах, протекающих часами, развивают такую силу, которая недоступна для поперечнополосатых мышц. Деятельность гладких мышц, как правило, не подчинена нашей воле (вегетативная иннервация, см. ниже) - они непроизвольны.

Гладкая мускулатура по своему развитию (филогенезу) является более древней, чем поперечнополосатая, и в большей степени распространена у низших форм животного мира.

Классификация гладких мышц

Гладкие мышцы подразделяются на висцеральные (унитарные) и мультиунитарные. Висцеральные гладкие мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К мулыпиунитарным относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В висцеральных гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Несмотря на это, возбуждение с нервных окончаний передается на все гладкие мышечные клетки пучка благодаря плотным контактам между соседними миоцитами - нексусам. Нексусы позволяют потенциалам действия и медленным волнам деполяризации распространяться с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса.

Функции и свойства гладких мышц

Пластичность . Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением . Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцію.

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ соединяется с кальмодулином (кальмодулин - рецептивный белок для иона Са2+). Возникающий комплекс активирует фермент - киназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является присоединение Са2+ к тропонину.

Химическая чувствительность . Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

Норадреналин действует на α- и β-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с β-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на α-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.

Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбудима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная активность мускулатуры матки затормаживается.

Гладкие мышцы входят в состав внутренних органов. Благодаря сокращению они обеспечивают двигательную (моторную) функцию них органов (пищеварительный канал, мочеполовая система, кровеносные сосуды и т.д.). В отличие от скелетных мышц, гладкие мышцы являются непроизвольными.

Морфо-функциональная структура гладких мышц. Основной структурной единицей гладких мышц является мышечная клетка, которая имеет веретенообразную форму и покрыта снаружи плазматической мембраной. Под электронным микроскопом в мембране можно заметить многочисленные углубления - кавеолы, которые значительно увеличивают общую поверхность мышечной клетки. Сарколеммы непосмугованих мышечной клетки включает в себя плазматическую мембрану вместе с базальной мембраной, которая покрывает ее извне, и прилегающими коллагеновыми волокнами. Основные внутриклеточные элементы:ядро, митохондрии, лизосомы, микротрубочки, саркоплазматической сети и сократительные белки.

Мышечные клетки образуют мышечные пучки и мышечные слои. Межклеточное пространство (в 100 нм и более) заполнен эластичными и коллагеновыми волокнами, капиллярами, фибробластами и др.. В некоторых участках мембраны соседних клеток лежат очень плотно (щель между клетками составляет 2-3 нм). Предполагают, что эти участки (нексус) служат для межклеточного связи, передачи возбуждения. Доказано, что одни гладкие мышцы содержат большое количество нексус (сфинктер зрачка, циркулярные мышцы тонкой кишки и др.), у других их мало или совсем нет (семявыносящих протоков, продольные мышцы кишок). Между непосмугованих мышечными клетками существует также промежуточный, или десмоподибний, связь (через утолщение мембраны и с помощью отростков клеток). Очевидно, эти связи имеют значение для механического соединения клеток и передачи механической силы клетками.

Благодаря хаотичному распределению миозинових и актиновых протофибрилл клетки гладких мышц не поперечнополосатые, как скелетные и сердечная. В отличие от скелетных мышц, в гладких мышцах нет Т-системы, а саркоплазматической сети составляет только 2-7% объема миоплазмы и не имеет связей с внешней средой клетки.

Физиологические свойства гладких мышц .

Гладкомышечные клетки, - как-поперечнополосатые, сокращаются вследствие скольжения актиновых протофибрилл между миозиновои, однако скорость скольжения и гидролиз АТФ, а значит, и скорость сокращения, в 100-1000 раз меньше, чем в поперечнополосатых мышцах. Благодаря этому гладкие мышцы - хорошо приспособлены для длительного скольжения с небольшим затратой энергии и без усталости.

Гладкие мышцы с учетом способности генерировать ПД в ответ на пороговое или надгиорогове раздражение условно делят на фазные и тонические. Фазные мышцы генерируют полноценный ПД, тонические - только местный, хотя им присущ и механизм генерации полноценных потенциалов. Неспособность тонических мышц к ПД объясняется высокой калиевой проницаемостью мембраны, которая препятствует развитию регенеративной деполяризации.

Величина мембранного потенциала гладкомышечных клеток непосмугованих мышц варьирует от -50 до -60 мВ. Как и в других мышцах, в том числе и в нервных клетках, в его образовании принимают участие главным образом к +, Na +, Cl-. В гладкомышечных клетках пищеварительного канала, матки, некоторых сосудах мембранный потенциал нестабилен, наблюдаются спонтанные колебания в виде медленных волн деполяризации, на вершине которых могут появляться разряды ПД. Длительность ПД гладких мышц колеблется от 20-25 мс до 1 с и более (например, в мышцах мочевого пузыря), т.е. она длиннее, чем продолжительность ПД скелетных мышц. В механизме ПД гладких мышц рядом с Na + большую роль играет Са2 +.

Спонтанная миогенная активность. В отличие от скелетных мышц, гладкие мышцы желудка, кишок, матки, мочеточников имеют спонтанную миогенные активность, т.е. развивают спонтанные тетаногиодибни сокращения. Они хранятся в условиях изоляции этих мышц и при фармакологическом выключении интрафузальных нервных сплетений. Итак, ПД возникает в собственно гладких мышцах, а не обусловлен передачей в мышцы нервных импульсов.

Эта спонтанная активность имеет миогенные происхождения и возникает в мышечных клетках, которые выполняют функцию водителя ритма. В этих клетках местный потенциал достигает критического уровня и переходит в ПД. Но за реполяризацию мембраны спонтанно возникает новый местный потонциал, который вызывает еще один ПД, и т.д. ПД, распространяясь через нексус на соседние мышечные клетки со скоростью 0,05-0,1 м / с, охватывает весь мышцу, вызывая его сокращение. Например, перистальтические сокращения желудка возникают с частотой 3 раза за 1 мин, сегментарные и Маятникообразные движения толстой кишки-в 20 раз за 1 мин в верхних отделах и 5-10 за 1 мин - в нижних. Таким образом, гладкие мышечные волокна названных внутренних органов обладают автоматизмом, который проявляется их способностью ритмически сокращаться при отсутствии внешних раздражителей.

Какова причина возникновения потенциала в клетках гладких мышц водителя ритма? Очевидно, он возникает вследствие уменьшения калиевой и увеличение натриевой и кальциевой проницаемости мембраны. Что касается регулярного возникновения медленных волн деполяризации, наиболее выраженных в мышцах ЖКТ, го нет достоверных данных об их ионное происхождения. Возможно, определенную роль играет уменьшение первоначального инактивирующего компонента калиевого тока при деполяризации мышечных клеток вследствие инактивации соответствующих ионных калиевых каналов.

Эластичность и растяжимость гладких мышц. В отличие от скелетных мышц, гладкие при растяжении себя как пластичные, эластичные структуры. Благодаря пластичности гладкая мышца может быть полностью расслаблен как в сокращенном, так и в растянутыми состоянии. Например, пластичность гладких мышц стенки желудка или мочевого пузыря по мере наполнения этих органов предотвращает повышение внутриполостного давления. Чрезмерное растяжение часто приводит к стимулированию сокращения, которое обусловлено деполяризацией клеток водителя ритма, возникающий при растяжении мышцы, и сопровождается повышением частоты ПД, а вследствие этого - усилением сокращения. Сокращение, которое активизирует процесс растяжения, играет большую роль в саморегулировании базального тонуса кровеносных сосудов.

Механизм сокращения гладких мышц. Обязательным условием возникновения сокращение гладких мышц, как и скелетных, е увеличение концентрации Са2 + в миоплазми (до 10в-5 М). Считается, что процесс сокращения активизируется преимущественно внеклеточным Са2 +, поступающего в мышечные клетки через потенциалзависимые Са2 +-каналы.

Особенность нервно-мышечной передачи в гладких мышцах заключается в том, что иннервация осуществляется вегетативной нервной системой и она может оказывать как возбуждающий, так и тормозящее влияние. По типу различают холинергические (медиатор ацетилхолин) и адренергические (медиатор норадреналин) медиаторы. Первые обычно содержатся в мышцах пищеварительной системы, вторые - в мышцах кровеносных сосудов.

Один и тот же медиатор в одних синапсах может быть возбуждающих, а в других - тормозным (в зависимости от свойств циторецепторив). Адренорецепторы делят на а-и В-. Норадреналин, воздействуя на а-адренорецепторы, суживает кровеносные сосуды и тормозит моторику пищеварительного тракта, а воздействуя на В-адренорецепторы, стимулирует деятельность сердца и расширяет кровеносные сосуды некоторых органов, расслабляет мышцы бронхов. Описаны нервно-мышечно-. ную передачу в гладких мышцах за помощью и других медиаторов.

В ответ на действие возбуждающего медиатора происходит деполяризация клеток гладких мышц, которая проявляется в виде возбуждающего синаптической потенциала (ССП). Когда он достигает критического уровня, возникает ПД. Это происходит тогда, когда до нервного окончания друг за другом подходят несколько импульсов. Возникновение ЗСГИ является следствием увеличения проницаемости постсинаптической мембраны для Na +, Са2 + и СИ ".

Тормозной медиатор вызывает гиперполяризацию постсинаптической мембраны, что проявляется в тормозном синаптического потенциале (ГСП). В основе гиперполяризации лежит повышение проницаемости мембраны в основном для К +. Роль тормозного медиатора в гладких мышцах, возбуждаемые ацетилхолином (например, мышцы кишки, бронхов), играет норадреналин, а в гладких мышцах, для которых возбуждающих медиатором является норадреналин (например, мышцы мочевого пузыря), - ацетилхолин.

Клинико-физиологический аспект. При некоторых заболеваниях, когда нарушается иннервация скелетных мышц, их пассивное растяжение или смещение сопровождается рефлекторным повышением их тонуса, т.е. устойчивости к растяжению (спастичность или ригидность).

При нарушении кровообращения, а также под действием некоторых продуктов метаболизма (молочной и фосфорной кислот), ядовитых веществ, алкоголя, усталости, снижения температуры мышц (например, при длительном плавании в холодной воде) после длительного активного сокращения мышцы может возникать контрактура. Чем больше нарушается функция мышцы, тем сильнее выражена контрактурно последействие (например, контрактура жевательных мышц при патологии челюстно-лицевой области). Каково происхождение контрактуры? Считается, что контрактура возникла вследствие уменьшения в мышце концентрации АТФ, что привело к образованию постоянной связи между поперечными мостиками и актиновыми протофибрилл. При этом мышца теряет гибкость и становится твердым. Контрактура проходит, мышца расслабляется, когда концентрация АТФ достигает нормального уровня.

При заболеваниях типа миотонии клеточные мембраны мышц возбуждаются так легко, что даже незначительное раздражение (например, введение игольчатого электрода при электромиографии) обусловливает разряд мышечных импульсов. Спонтанные ПД (потенциалы фибрилляции) регистрируются также на первой стадии после денервации мышцы (пока бездействие не приведет к его атрофии).

Они не имеют поперечной исчерченности (отсюда их название). Во-вторых, гладкие мышцы получают иннервацию не от соматического, а от вегетативного отдела нервной системы , поэтому лишены прямой произвольной регуляции.

Так же как в скелетной мышце, в гладкой сила генерируется благодаря тому, что между актиновыми и миозиновыми филаментами совершают свои вращательные движения поперечные мостики , активность которых регулируется ионами Са2+. Однако организация сократительных филаментов и процесс электромеханического сопряжения для этих двух типов мышц различны. Механизм электромеханического сопряжения в разных гладких мышцах существенно варьируется.

Концентрация миозина в гладкой мышце составляет лишь около трети от его содержания в поперечно-полосатой, в то время как содержание актина может быть в два раза больше. Несмотря на эти различия, максимальное напряжение на единицу площади поперечного сечения, развиваемое гладкими мышцами, подобно тому, которое развивается скелетной.

Соотношение между изометрическим напряжением и длиной для гладких мышечных клеток количественно такое же, как для волокон скелетной мышцы. При оптимальной длине гладкой мышцы развивается максимальное напряжение, а при ее сдвигах в обе стороны от оптимального значения оно уменьшается. Однако по сравнению со скелетной мышцей гладкая способна развивать напряжение в более широком диапазоне значений длины. Это важное адаптационное свойство, если учесть, что большинство из них входит в состав стенок полых органов, при изменении объема которых меняется и длина гладких мышечных клеток. Даже при относительно большом увеличении объема, как, например, при заполнении мочевого пузыря, гладкие мышечные клетки в его стенках сохраняют в определенной мере способность к развитию напряжения; в поперечно-полосатых волокнах подобное растяжение могло бы привести к расхождению толстых и тонких филаментов за пределы зоны их перекрывания.

Эти мышцы образуют мышечные слои стенок желудка, ки­шечника, мочеточников, бронхов, кровеносных сосудов и других внутренних органов. Они построены из веретенообразных одно­ядерных мышечных клеток. Гладкие мышцы разделяются на две основные группы: мультиунитарные и унитарные. Мультиунитарные мышцы функционируют независимо друг от друга, и каж­дое волокно может иннервироваться отдельным нервным окончанием. Такие волокна обнаружены в ресничной мышце глаза, ми­гательной перепонке и мышечных слоях некоторых крупных сосудов, к ним относятся мышцы, поднимающие волосы. У унитарных мышц волокна настолько тесно переплетены, что их мембраны могут сливаться, образуя электрические контакты (нексусы). При раздражении одного волокна за счет этих контактов ПД быстро распространяются на соседние волокна. Поэтому, несмотря на то, что двигательные нервные окончания расположены на не­большом числе мышечных волокон, в реакцию вовлекается вся мышца. Такие мышцы имеются в большинстве органов: пищева­рительном тракте, матке, в мочеточниках.

Особенностью гладких мышц является их способность осу­ществлять медленные и длительные тонические сокращения. Медленные, ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают пере­мещение содержимого этих органов. Длительные тонические со­кращения гладких мышц обеспечивают функционирование сфинктеров полых органов, которые препятствуют выходу их со­держимого.

Гладкие мышцы стенок кровеносных сосудов, особенно арте­рий и артериол, также находятся в состоянии постоянного тони­ческого сокращения. Изменение тонуса мышц стенок артериаль­ных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов. Важным свойством гладких мышц является их пластичность, т.е. способ­ность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирова­ния полых органов. Например, пластичность мышц мочевого пу­зыря по мере его наполнения предотвращает избыточное повы­шение давления.

Сильное и резкое растяжение гладких мышц вызывает их со­кращение, что обусловлено нарастающей при растяжении депо­ляризацией клеток, которая обеспечивает автоматию гладкой мышцы. Такое сокращение играет важную роль в авторегуляции тонуса кровеносных сосудов, а также способствует непроизволь­ному опорожнению переполненного мочевого пузыря в тех слу­чаях, когда нервная регуляция отсутствует в результате повреж­дения спинного мозга.


В гладких мышцах тетаническое сокращение возникает при низкой частоте стимуляции. В отличие от скелетных, гладкие мышцы способны развивать спонтанные тетанообразные сокра­щения в условиях денервации и даже после блокады интраму-ральных ганглиев. Такие сокращения возникают вследствие ак­тивности клеток, обладающих автоматией (пейсмекерных кле­ток), которые отличаются по электрофизиологическим свойствам от других мышечных клеток. В них появляются пейсмекерные по­тенциалы, деполяризующие мембрану до критического уровня, что вызывает возникновение потенциала действия.

Особенностью гладких мышц является их высокая чувстви­тельность к медиаторам, которые оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетилхолина на препарат мышцы толстой кишки частота ПД воз­растает. Вызываемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее сокращение. Норадреналин, напротив, гиперполяризует мембрану, снижая частоту ПД и величину тетануса.

Возбуждение гладкомышечных клеток вызывает повышение концентрации кальция в саркоплазме, что активирует сократи­тельные структуры. Так же как сердечная и скелетная мышцы, гладкая мышца расслабляется при снижении концентрации ио­нов кальция. Расслабление гладких мышц происходит медленнее, так как удаление ионов кальция замедлено.

Гладкие мышцы входят в состав внутренних органов. Благодаря сокращению они обеспечивают двигательную (моторную) функцию них органов (пищеварительный канал, мочеполовая система , кровеносные сосуды и т.д.). В отличие от скелетных мышц, гладкие мышцы являются непроизвольными.
Морфо-функциональная структура гладких (не исполосованных) мышц. Основной структурной единицей гладких мышц является мышечная клетка, которая имеет веретенообразную форму и покрыта снаружи плазматической мембраной. Под электронным микроскопом в мембране можно заметить многочисленные углубления - кавеолы, которые значительно увеличивают общую поверхность мышечной клетки. Сарколеммы непосмугованих мышечной клетки включает в себя плазматическую мембрану вместе с базальной мембраной, которая покрывает ее извне, и прилегающими коллагеновыми волокнами. Основные внутриклеточные элементы:
ядро, митохондрии, лизосомы, микротрубочки, саркоплазматической сети и сократительные белки.
Мышечные клетки образуют мышечные пучки и мышечные слои. Межклеточное пространство (в 100 нм и более) заполнен эластичными и коллагеновыми волокнами, капиллярами, фибробластами и др.. В некоторых участках мембраны соседних клеток лежат очень плотно (щель между клетками составляет 2-3 нм). Предполагают, что эти участки (нексус) служат для межклеточного связи, передачи возбуждения. Доказано, что одни гладкие мышцы содержат большое количество нексус (сфинктер зрачка, циркулярные мышцы тонкой кишки и др.), у других их мало или совсем нет (семявыносящих протоков, продольные мышцы кишок). Между непосмугованих мышечными клетками существует также промежуточный, или десмоподибний, связь (через утолщение мембраны и с помощью отростков клеток). Очевидно, эти связи имеют значение для механического соединения клеток и передачи механической силы клетками.
Благодаря хаотичному распределению миозинових и актиновых протофибрилл клетки гладких мышц не поперечнополосатые, как скелетные и сердечная. В отличие от скелетных мышц, в гладких мышцах нет Т-системы, а саркоплазматической сети составляет только 2-7% объема миоплазмы и не имеет связей с внешней средой клетки.
Физиологические свойства гладких мышц. Гладкомышечные клетки, - как-поперечнополосатые, сокращаются вследствие скольжения актиновых протофибрилл между миозиновои, однако скорость скольжения и гидролиз АТФ, а значит, и скорость сокращения, в 100-1000 раз меньше, чем в поперечнополосатых мышцах. Благодаря этому гладкие мышцы - хорошо приспособлены для длительного скольжения с небольшим затратой энергии и без усталости.
Гладкие мышцы с учетом способности генерировать ПД в ответ на пороговое или надгиорогове раздражение условно делят на фазные и тонические. Фазные мышцы генерируют полноценный ПД, тонические - только местный, хотя им присущ и механизм генерации полноценных потенциалов. Неспособность тонических мышц к ПД объясняется высокой калиевой проницаемостью мембраны, которая препятствует развитию регенеративной деполяризации.
Величина мембранного потенциала гладкомышечных клеток непосмугованих мышц варьирует от -50 до -60 мВ. Как и в других мышцах, в том числе и в нервных клетках, в его образовании принимают участие главным образом к +, Na +, Cl-. В гладкомышечных клетках пищеварительного канала, матки , некоторых сосудах мембранный потенциал нестабилен, наблюдаются спонтанные колебания в виде медленных волн деполяризации, на вершине которых могут появляться разряды ПД. Длительность ПД гладких мышц колеблется от 20-25 мс до 1 с и более (например, в мышцах мочевого пузыря), т.е. она
длиннее, чем продолжительность ПД скелетных мышц. В механизме ПД гладких мышц рядом с Na + большую роль играет Са2 +.
Спонтанная миогенная активность. В отличие от скелетных мышц, гладкие мышцы желудка, кишок, матки, мочеточников имеют спонтанную миогенные активность, т.е. развивают спонтанные тетаногиодибни сокращения. Они хранятся в условиях изоляции этих мышц и при фармакологическом выключении интрафузальных нервных сплетений. Итак, ПД возникает в собственно гладких мышцах, а не обусловлен передачей в мышцы нервных импульсов.
Эта спонтанная активность имеет миогенные происхождения и возникает в мышечных клетках, которые выполняют функцию водителя ритма. В этих клетках местный потенциал достигает критического уровня и переходит в ПД. Но за реполяризацию мембраны спонтанно возникает новый местный потонциал, который вызывает еще один ПД, и т.д. ПД, распространяясь через нексус на соседние мышечные клетки со скоростью 0,05-0,1 м / с, охватывает весь мышцу, вызывая его сокращение. Например, перистальтические сокращения желудка возникают с частотой 3 раза за 1 мин, сегментарные и Маятникообразные движения толстой кишки-в 20 раз за 1 мин в верхних отделах и 5-10 за 1 мин - в нижних. Таким образом, гладкие мышечные волокна названных внутренних органов обладают автоматизмом, который проявляется их способностью ритмически сокращаться при отсутствии внешних раздражителей.
Какова причина возникновения потенциала в клетках гладких мышц водителя ритма? Очевидно, он возникает вследствие уменьшения калиевой и увеличение натриевой и (или) кальциевой проницаемости мембраны. Что касается регулярного возникновения медленных волн деполяризации, наиболее выраженных в мышцах ЖКТ, го нет достоверных данных об их ионное происхождения. Возможно, определенную роль играет уменьшение первоначального инактивирующего компонента калиевого тока при деполяризации мышечных клеток вследствие инактивации соответствующих ионных калиевых каналов. Благодаря этому становится возможным возникновение повторных Г1Д.
Эластичность и растяжимость гладких мышц. В отличие от скелетных мышц, гладкие при растяжении себя как пластичные, эластичные структуры. Благодаря пластичности гладкая мышца может быть полностью расслаблен как в сокращенном, так и в растянутыми состоянии. Например, пластичность гладких мышц стенки желудка или мочевого пузыря по мере наполнения этих органов предотвращает повышение внутриполостного давления. Чрезмерное растяжение часто приводит к стимулированию сокращения, которое обусловлено деполяризацией клеток водителя ритма, возникающий при растяжении мышцы, и сопровождается повышением частоты ПД, а вследствие этого - усилением сокращения. Сокращение, которое активизирует процесс растяжения, играет большую роль в саморегулировании базального тонуса кровеносных сосудов.
Механизм сокращения гладких мышц. Обязательным условием возникновения сокращение гладких мышц, как и скелетных, е увеличение концентрации Са2 + в миоплазми (до 10в-5 М). Считается, что процесс сокращения активизируется преимущественно внеклеточным Са2 +, поступающего в мышечные клетки через потенциалзависимые Са2 +-каналы.
Особенность нервно-мышечной передачи в гладких мышцах заключается в том, что иннервация осуществляется вегетативной нервной системой и она может оказывать как возбуждающий, так и тормозящее влияние. По типу различают холинергические (медиатор ацетилхолин) и адренергические (медиатор норадреналин) медиаторы. Первые обычно содержатся в мышцах пищеварительной системы, вторые - в мышцах кровеносных сосудов.
Один и тот же медиатор в одних синапсах может быть возбуждающих, а в других - тормозным (в зависимости от свойств циторецепторив). Адренорецепторы делят на а-и В-. Норадреналин, воздействуя на а-адренорецепторы, суживает кровеносные сосуды и тормозит моторику пищеварительного тракта, а воздействуя на В-адренорецепторы, стимулирует деятельность сердца и расширяет кровеносные сосуды некоторых органов, расслабляет мышцы бронхов. Описаны нервно-мышечно-. ную передачу в гладких мышцах за помощью и других медиаторов.
В ответ на действие возбуждающего медиатора происходит деполяризация клеток гладких мышц, которая проявляется в виде возбуждающего синаптической потенциала (ССП). Когда он достигает критического уровня, возникает ПД. Это происходит тогда, когда до нервного окончания друг за другом подходят несколько импульсов. Возникновение ЗСГИ является следствием увеличения проницаемости постсинаптической мембраны для Na +, Са2 + и СИ ".
Тормозной медиатор вызывает гиперполяризацию постсинаптической мембраны, что проявляется в тормозном синаптического потенциале (ГСП). В основе гиперполяризации лежит повышение проницаемости мембраны в основном для К +. Роль тормозного медиатора в гладких мышцах, возбуждаемые ацетилхолином (например, мышцы кишки, бронхов), играет норадреналин, а в гладких мышцах, для которых возбуждающих медиатором является норадреналин (например, мышцы мочевого пузыря), - ацетилхолин.
Клинико-физиологический аспект. При некоторых заболеваниях, когда нарушается иннервация скелетных мышц, их пассивное растяжение или смещение сопровождается рефлекторным повышением их тонуса, т.е. устойчивости к растяжению (спастичность или ригидность).
При нарушении кровообращения, а также под действием некоторых продуктов метаболизма (молочной и фосфорной кислот), ядовитых веществ, алкоголя, усталости, снижения температуры мышц (например, при длительном плавании в холодной воде) после длительного активного сокращения мышцы может возникать контрактура. Чем больше нарушается функция мышцы, тем сильнее выражена контрактурно последействие (например, контрактура жевательных мышц при патологии челюстно-лицевой области). Каково происхождение контрактуры? Считается, что контрактура возникла вследствие уменьшения в мышце концентрации АТФ, что привело к образованию постоянной связи между поперечными мостиками и актиновыми протофибрилл. При этом мышца теряет гибкость и становится твердым. Контрактура проходит, мышца расслабляется, когда концентрация АТФ достигает нормального уровня.
При заболеваниях типа миотонии клеточные мембраны мышц возбуждаются так легко, что даже незначительное раздражение (например, введение игольчатого электрода при электромиографии) обусловливает разряд мышечных импульсов. Спонтанные ПД (потенциалы фибрилляции) регистрируются также на первой стадии после денервации мышцы (пока бездействие не приведет к его атрофии).
Тонические сокращения некоторых гладких мышц, особенно мышц сосудистых стенок (базальный или миогенный, тонус) активизируются преимущественно внеклеточным Са 2 +. Физиологически активные вещества и медиаторы могут вызвать снижение тонуса гладких мышц путем закрытия хемочутливих Са2 +-каналов (через активизацию хеморецепторов) или гиперполяризации, которая обусловливает подавление спонтанных ПД и закрытия потенциалзависимых Са2 +-каналов.