Бактерии живущие в горячих источниках. Организмы термальных вод. Смотреть что такое "термофильные организмы" в других словарях

Некоторые организмы обладают особым преимуществом, которое позволяет им выдерживать самые экстремальные условия, где другие просто не справятся. Среди таких способностей можно отметить устойчивость к огромному давлению, экстремальным температурам и другие. Эти десять существ из нашего списка дадут фору любому, кто осмелится претендовать на звание самого выносливого организма.

10. Гималайский прыгающий паук

Азиатский дикий гусь славится полетами на высоте более 6,5 километров, в то время как самое высокое поселение, населенное людьми, находится на высоте в 5100 метров, в перуанских Андах. Тем не менее, высокогорный рекорд принадлежит вовсе не гусям, а гималайскому прыгающему пауку (Euophrys omnisuperstes). Обитая на высоте свыше 6700 метров, этот паук питается преимущественно мелкими насекомыми, занесенными туда порывами ветра. Ключевой особенностью этого насекомого является способность выжить в условиях почти полного отсутствия кислорода.

9. Гигантский кенгуровый прыгун


Обычно, когда мы размышляем о животных, которые способны дольше всех прожить без воды, на ум сразу приходит верблюд. Но верблюды способны продержаться без воды в пустыне всего лишь 15 дней. Между тем, вы удивитесь, когда узнаете, что в мире существует животное, способное прожить всю жизнь, так и не выпив ни капли воды. Гигантский кенгуровый прыгун - близкий родственник бобров. Средняя продолжительность их жизни обычно составляет от 3 до 5 лет. Влагу они обычно получают из пищи, поедая различные семена. Кроме того, эти грызуны не потеют, тем самым избегая дополнительных потерь воды. Обычно эти зверьки обитают в Долине Смерти, и в данный момент находятся под угрозой исчезновения.

8. "Жароустойчивые" черви


Поскольку тепло в воде более эффективно передается организмам, то температура воды в 50 градусов по Цельсию будет куда опаснее, чем такая же температура воздуха. По этой причине в горячих подводных источниках процветают преимущественно бактерии, чего не скажешь о многоклеточных формах жизни. Тем не менее, существует особый вид червей, называемый paralvinella sulfincola, который с радостью обустраивается в местах, где вода достигает температур в 45-55 градусов. Учеными был проведен эксперимент, где подогревалась одна из стенок аквариума, в результате выяснилось, что черви предпочли оставаться именно в этом месте, игнорируя более прохладные места. Считается, что такая особенность выработалась у червей для того, чтобы те могли лакомиться бактериями, в изобилии водящимися в горячих источниках. Поскольку у них до этого не было естественных врагов, бактерии были сравнительно легкой добычей.

7. Гренландская полярная акула


Гренландская полярная акула - одна из самых крупных и наименее изученных акул планеты. Несмотря на то, что плавают они достаточно медленно (их может обогнать любой пловец-любитель), встречают их крайне редко. Это связано с тем, что этот вид акул, как правило, обитает на глубине в 1200 метров. Кроме того, эта акула одна из самых устойчивых к холоду. Обычно она предпочитает оставаться в воде, температура которой колеблется в промежутке между 1 и 12 градусами Цельсия. Поскольку эти акулы обитают в холодных водах, им приходится передвигаться крайне медленно, чтобы по минимуму тратить свою энергию. В пище они неразборчивы и едят все, что попадается на пути. Ходят слухи, что их срок жизни составляет порядка 200 лет, но никто до сих пор не смог подтвердить или опровергнуть его.

6. Дьявольский червь


На протяжении многих десятилетий ученые считали, что только одноклеточные организмы способны выживать на больших глубинах. По их мнению, высокое давление, недостаток кислорода и экстремальные температуры стояли на пути у многоклеточных существ. Но затем были обнаружены микроскопические черви на глубине в несколько километров. Названные halicephalobus mephisto, в честь демона из немецкого фольклора, она были обнаружены в пробах воды, на глубине в 2,2 километра от поверхности земле, залегавших в одной из пещер в Южной Африке. Им удалось пережить экстремальные условия окружающей среды, что дало возможность предположить, что на Марсе и на других планетах в нашей галактике возможна жизнь.

5. Лягушки


Некоторые виды лягушек широко известны благодаря своей способности буквально замораживаться на весь зимний период и оживать с приходом весны. В Северной Америке было найдено пять видов таких лягушек, самым распространенным среди которых является обычная древесная лягушка. Поскольку древесные лягушки не очень сильны в закапывании, то прячутся просто под опавшей листвой. В их жилах находится вещество наподобие антифриза, и хотя их сердца в конце концов останавливаются, это временное явление. Основой их техники выживания является огромная концентрация глюкозы, поступающая в кровь из печени лягушки. Что еще более удивительно, так это тот факт, что лягушки способны демонстрировать свое умение замораживаться не только в природной среде, но и в лабораторных условиях, позволяя ученым раскрыть свои секреты.

{banner_ads_inline}


4. Глубоководные микробы


Все мы знаем, что самая глубокая точка в мире - это Марианская впадина. Ее глубина достигает почти 11 километров, а давление там превышает атмосферное в 1100 раз. Несколько лет назад ученым удалось обнаружить там гигантских амеб, которых удалось заснять при помощи камеры с высоким разрешением и защищенной стеклянной сферой от того огромного давления, что царит на дне. Более того, недавняя экспедиция, отправленная самим Джеймсом Кэмероном, показала, что в глубинах Марианской впадины могут существовать и другие формы жизни. Были добыты образцы донных отложений, которые доказали, что впадина буквально кишит микробами. Этот факт поразил ученых, ведь экстремальные условия царящие там, а также огромное давление - далеко не райский уголок.

3. Bdelloidea


Коловратки вида Bdelloidea - невероятно крохотные беспозвоночные женского пола, обычно они встречаются в пресной воде. С момента их открытия, не было найдено ни одного самца этого вида, а сами коловратки размножаются бесполым путем, что, в свою очередь, разрушает их собственный ДНК. Восстанавливают они свой родной ДНК поедая другие виды микроорганизмов. Благодаря этой способности, коловратки могут выдерживать экстремальное обезвоживание, более того, они способны выдержать такие уровни радиации, которые убили бы большинство живых организмов нашей планеты. Ученые считают, что их способность восстанавливать свое ДНК появилась в результате необходимости выживания в крайне засушливой среде.

2. Таракан


Существует миф, что тараканы будут единственными живыми организмами, которые переживут ядерную войну. В самом деле, эти насекомые способны прожить без воды и пищи несколько недель, и более того, они могут неделями жить без головы. Тараканы существуют вот уже 300 миллионов лет, пережив даже динозавров. Каналом Discovery был проведен ряд экспериментов, которые должны были показать, выживут или нет тараканы при мощном ядерном излучении. В результате оказалось, что почти половина всех насекомых смогла пережить излучение в 1000 рад (такое излучение способно убить взрослого здорового человека всего за 10 минут воздействия), более того, 10% тараканов выжило при воздействии излучения в 10000 рад, что равно излучению при ядерном взрыве в Хиросиме. К сожалению, ни одно из этих маленьких насекомых не выжило после дозы излучения в 100000 рад.

1. Тихоходки


Крошечные водные организмы, называемые тихоходками, оказались самыми выносливыми организмами нашей планеты. Эти, на первый взгляд, милые животные способны пережить практически любые экстремальные условия, будь то жара или холод, огромное давление или высокая радиация. Они способны выжить некоторое время даже в космосе. В экстремальных условиях и в состоянии крайнего обезвоживания эти существа способны оставаться живыми на протяжении нескольких десятилетий. Они оживают, стоит их только поместить в водоем.

Температура является важнейшим экологическим фактором. Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и другие биологические свойства организмов зависящие в основном от температуры. Диапазон, т.е. пределы температур в которых может существовать жизнь, колеблется примерно от -200°С до +100°С, иногда обнаруживается существование бактерии в горячих источниках при температуре 250°С. В действительности, большинство организмов могут существовать при еще более узком диапазоне температур.

Некоторые виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться в горячих источниках при температуре, близкой к точке кипения. Верхний температурный предел для бактерии горячих источников лежит около 90°С. Изменчивость температуры очень важна с экологической точки зрения.

Любой вид способен жить только в пределах определенного интервала температур, так называемые максимальной и минимальной летальной температурами. За пределами этих критических крайних температур, холод или жара, наступает смерть организма. Где-то между ними находится оптимальная температура, при которой жизнедеятельность всех организмов, живого вещества в целом идет активно.

По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах. Например, лишайники и многие бактерии могу жить при различной температуре, или орхидеи и другие теплолюбивые растения тропических поясов — являются стенотермными.

Некоторые животные способны поддерживать постоянную температуру тела, не зависимо от температуры окружающей среды. Такие организмы называются гомойтермными. У других животных температура тела меняется в зависимости от температуры окружающей среды. Их называют пойкилотермными. В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы: криофиллы — организмы приспособленные к холоду, к низким темпера турам; термофилы — или теплолюбивые.

Правило Аллена — экогеографическое правило, установленное Д. Алленом в 1877 г. Согласно с этим правилом среди родственных форм гомойотермных (теплокровных) животных, ведущих сходный образ жизни, те, которые обитают в более холодном климате, имеют относительно меньшие выступающие части тела: уши, ноги, хвосты и т. д.

Уменьшение выступающих частей тела приводит к уменьшению относительной поверхности тела и способствует экономии тепла.

Примером данного правила являются представители семейства Собачьи из различных регионов. Наименьшие (относительно длины тела) уши и менее вытянутая морда в этом семействе — у песца (ареал — Арктика), а наибольшие уши и узкая, вытянутая морда — у лисицы фенека (ареал — Сахара).


Также это правило выполняется в отношении в человеческих популяций: самые короткие (относительно размеров тела) нос, руки и ноги характерны для эсскимосско-алеутских народов (эскимосов, инуитов), а длинные руки и ноги для фур и тутси.

Правило Бергмана — экогеографическое правило, сформулированное в 1847 г. немецким биологом Карлом Бергманом. Правило гласит, что среди сходных форм гомойотермных (теплокровных) животных наиболее крупными являются те, которые живут в условиях более холодного климата — в высоких широтах или в горах. Если существуют близкие виды (например, виды одного рода), которые существенно не отличаются по характеру питания и образу жизни, то более крупные виды также встречаются в условиях более сурового (холодного) климата.

Правило основано на предположении, что общая теплопродукция у эндотермных видов зависит от объёма тела, а скорость теплоотдачи — от площади его поверхности. При увеличении размеров организмов объём тела растет быстрее, чем его поверхность. Экспериментально это правило впервые было проверено на собаках разного размера. Оказалось, что теплопродукция у мелких собак выше на единицу массы, но независимо от размера она остается практически постоянной на единицу площади поверхности.

Правило Бергмана действительно нередко выполняется как в пределах одного вида, так и среди близких видов. Например,амурская форма тигра с Дальнего Востока крупнее суматранской из Индонезии. Северные подвиды волка в среднем крупнее южных. Среди близких видов рода медведь наиболее крупные обитают в северных широтах (белый медведь, бурые медведи с о. Кодьяк), а наиболее мелкие виды (например, очковый медведь) — в районах с теплым климатом.

В то же время это правило нередко подвергалось критике; отмечалось, что оно не может иметь общего характера, так как на размеры млекопитающих и птиц влияют многие другие факторы, кроме температуры. Кроме того, адаптации к суровому климату на популяционном и видовом уровне часто происходят не за счет изменений размеров тела, а за счет изменений размеров внутренних органов (увеличение размера сердца и легких) или за счет биохимических адаптаций. С учетом этой критики необходимо подчеркнуть, что правило Бергмана носит статистический характер и проявляет свое действие отчетливо при прочих равных условиях.

Действительно, из этого правила известно много исключений. Так, наиболее мелкая раса шерстистого мамонта известна с заполярного острова Врангеля; многие лесные подвиды волка крупнее тундровых (например, исчезнувший подвид с полуострова Кенай; предполагается, что крупные размеры могли давать этим волкам преимущество при охоте на крупных лосей, населяющих полуостров). Дальневосточный подвид леопарда, обитающий на Амуре, существенно меньше, чем африканский. В приведенных примерах сравниваемые формы отличаются по образу жизни (островные и континентальные популяции; тундровый подвид, питающийся более мелкой добычей и лесной, питающийся более крупной).

В отношении человека правило в определенной степени применимо (например, племена пигмеев, видимо, неоднократно и независимо появлялись в разных районах с тропическим климатом); однако из-за различий в местных диетах и обычаях, миграции и дрейфа генов между популяциями накладываются ограничения на применимость этого правила.

Правило Глогера состоит в том, что среди родственных друг другу форм (разных рас или подвидов одного вида, родственных видов) гомойотермных (теплокровных) животных, те, которые обитают в условиях тёплого и влажного климата, окрашены ярче, чем те, которые обитают в условиях холодного и сухого климата. Установлено в 1833 году Константином Глогером (Gloger C. W. L.; 1803-1863), польским и немецким орнитологом.

К примеру, большинство пустынных видов птиц окрашены тусклее, чем их родственники из субтропических и тропических лесов. Объясняться правило Глогера может как соображениями маскировки, так и влиянием климатических условий на синтез пигментов. В определённой степени правило Глогера распространяется и напойкилотермных (холоднокровных) животных, в частности, насекомых.

Влажность как экологический фактор

Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность — это количество водяного пара в воздухе. Без влажности или воды нет жизни.

Влажность - это параметр характеризующий содержание водяного пара в воздухе. Абсолютная влажность - это количество водяного пара в воздухе и зависит от температуры и давления. Это количество называется относительной влажностью (т.е. соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.)

В природе существует суточный ритм влажности. Влажность колеблется по вертикали и горизонтали. Этот фактор наряду со светом и температурой играет большую роль в регулировании активности организмов и их распространении. Влажность изменяет и эффект температуры.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.

Растения поглощают воду из почвы и почти полностью (97-99%) испаряется через листья. Этот процесс называется транспирацией. Испарение охлаждает листья. Благодаря испарению идет транспорт ионов, через почву к корням, транспорт ионов между клетками и т.д.

Определенное количество влажности совершенно необходима для наземных организмов. Многие из них для нормальной жизнедеятельности нуждаются в относительной влажности 100%, и наоборот организм находящийся в нормальном состоянии, не может жить долгое время в абсолютно сухом воздухе, ибо он постоянно теряет воду. Вода есть необходимая часть живого вещества. Поэтому потеря воды в известном количестве приводит к гибели.

Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Наземные животные также приспосабливаются. Многие из них пьют воду, другие всасывают ее через покровы тела в жидком или парообразном состоянии. Например, большинство амфибий, некоторые насекомые и клещи. Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей. Другие животные получает воду в процессе окисления жиров.

Вода для живых организмов совершенно необходима. Поэтому организмы распространяются по местообитанию в зависимости от своих потребностей: водные организмы в воде живут постоянно; гидрофиты могут жить только в очень влажных средах.

С точки зрения экологической валентности гидрофиты и гигрофиты относятся к группе стеногигров. Влажность сильно влияет на жизненные функции организмов, например, 70% относительная влажность была очень благоприятным для полевого созревания и плодовитости самок перелетной саранчи. При благоприятном размножении они причиняют огромный экономический урон посевам многих стран.

Для экологической оценки распространения организмов пользуются показателем сухости климата. Сухость служит селективным фактором для экологической классификации организмов.

Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

1. Гидатофиты — это водные растения.

2. Гидрофиты — это растения наземно-водные.

3. Гигрофиты — наземные растения живущие в условиях повышенной влажности.

4. Мезофиты — это растения, произрастающие при среднем увлажнении

5. Ксерофиты — это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты — сочные растения (кактусы); склерофиты — это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты — это степные растения. Стипаксерофиты — это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.

Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.

Влажность - это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр.

Свет как экологический фактор. Роль света в жизни организмов

Свет, есть одна из форм энергии. По первому закону термодинамики, или закону сохранения энергии, энергия может переходить из одной формы в другую. По этому закону, организмы являются термодинамической системой постоянно обменивающейся с окружающей средой энергией и веществом. Организмы, на поверхности Земли подвергаются воздействию потока энергии, в основном солнечной энергий, а также и длинноволного теплового излучения космических тел.

Оба эти фактора определяют климатические условия среды (температура, скорость испарения воды, движение воздуха и воды). На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см 2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии, т.е. 1,34 кал. на см 2 в 1мин. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.

Степень ослабления солнечного света и космического излучения зависит от длины волны (частоты) света. Ультрафиолетовое излучение с длиной волны менее 0,3 мкм почти не проходит через озоновый слой (на высоте около 25 км). Такое излучение опасно для живого организма в частности для протоплазмы.

В живой природе свет единственный источник энергии, все растения, кроме бактерий фотосинтезируют, т.е. синтезируют органические вещества из неорганических веществ (т.е. из воды, минеральных солей и СО-В живой природе свет единственный источник энергии, все растения, кроме бактерий 2 — при помощи лучистой энергии в процессе ассимиляции). Все организмы зависят в питании от земных фотосинтезирующих т.е. хлорофиллоносных растений.

Свет как экологический фактор делится на ультрафиолетовый с длиной волны - 0,40 - 0,75 мкм и инфракрасный с длиной волны больше этих величии.

Действие этих факторов зависит от свойства организмов. Каждый вид организма адаптирован к тому или иному спектру длиной волны света. Одни виды организмов адаптировались к ультрафиолетовым, а другие к инфракрасным.

Некоторые организмы способны различить длину волны. Они обладают специальными световоспринимаемыми системами и имеют цветное зрение, которые имеют огромное значение в их жизнедеятельности. Многие насекомые чувствительны к коротковолновому излучение, которое человек не воспринимает. Ночные бабочки хорошо воспринимают ультрафиолетовые лучи. Пчелы и птицы точно определяют свое местонахождение и ориентируются на местности даже ночью.

Организмы сильно реагируют и на интенсивность света. По этим признакам растения делятся на три экологические группы:

1. Светолюбивые, солнцелюбивые или гелиофиты - которые способны нормально развиваться только под солнечными лучами.

2. Тенелюбивые, или сциофиты - это растения нижних ярусов лесов и глубоководные растения, например, ландыши и другие.

При снижении интенсивности света замедляется и фотосинтез. У всех живых организмов существуют пороговые чувствительности интенсивности света, а также к другим экологическим факторам. У различных организмов пороговая чувствительность к экологическим факторам неодинакова. Например, интенсивный свет тормозит развитие мух дрозофилл, даже вызывает их гибель. Не любят свет и тараканы и другие насекомые. У большинства фотосинтетических растений при слабой интенсивности света идет торможение синтеза белков, а у животных тормозятся процессы биосинтеза.

3. Теневыносливые или факультативные гелиофиты. Растения которые хорошо растут и в тени и на свету. У животных эти свойства организмов называются светолюбивые (фотофилы), тенелюбивые (фотофобы), эврифобные — стенофобные.

Экологическая валентность

степень приспособляемости живого организма к изменениямусловий среды. Э. в. представляет собой видовое свойство. Количественно она выражается диапазономизменений среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Э. в. можетрассматриваться как в отношении реакции вида на отдельные факторы среды, так и в отношении комплексафакторов.

В первом случае виды, переносящие широкие изменения силы воздействующего фактора,обозначаются термином, состоящим из названия данного фактора с приставкой «эври» (эвритермные — поотношению к влиянию температуры, эвригалинные — к солёности, эврибатные — к глубине и т.п.); виды, приспособленные лишь к небольшим изменениям данного фактора, обозначаются аналогичным термином сприставкой «стено» (стенотермные, стеногалинные и т.п.). Виды, обладающие широкой Э. в. по отношению ккомплексу факторов, называются эврибионтами (См. Эврибионты) в противоположность стенобионтам (См.Стенобионты), обладающим малой приспособляемостью. Поскольку эврибионтность даёт возможностьзаселения разнообразных мест обитания, а стенобионтность резко суживает круг пригодных для вида стаций,эти две группы часто называют соответственно эври- или стенотопными.

Эврибионты , животные и растительные организмы, способные существовать при значительные изменениях условий окружающей среды. Так, например, обитатели морской литорали переносят регулярное осушение во время отлива, летом — сильное прогревание, а зимой — охлаждение, а иногда и промерзание (эвритермные животные); обитатели эстуариев рек выдерживают значит. колебания солёности воды (эвригалинные животные); ряд животных существует в широком диапазоне гидростатического давления (эврибатные животные). Многие наземные обитатели умеренных широт способны выдерживать большие сезонные колебания температуры.

Эврибионтность вида увеличивается способностью переносить неблагоприятные условия в состоянии анабиоза (многие бактерии, споры и семена многих растений, взрослые многолетние растения холодных и умеренных широт, зимующие почки пресноводных губок и мшанок, яйца жаброногих ракообразных, взрослые тихоходки и некоторые коловратки и др.) или спячки (некоторые млекопитающие).

ПРАВИЛО ЧЕТВЕРИКОВА, правило, согласно к-рому в природе все виды живых организмов, представлены не отдельными изолированными особями, а в форме совокупностей числа (иногда очень большого) особей-популяций. Выведено С. С. Четвериковым (1903).

Вид - это исторически сложившаяся совокупность популяций особей, сходных по морфо-физиологическим свойствам, способных свободно скрещиваться между собой и давать плодовитое потомство, занимающих определенный ареал. Каждый вид живых организмов можно описать совокупностью характерных черт, свойств, которые называются признаками вида. Признаки вида, с помощью которых один вид можно отличить от другого, называются критериями вида.

Наиболее часто используют семь общих критериев вида:

1. Специфический тип организации: совокупность характерных признаков, позволяющих отличить особей данного вида от особей другого.

2. Географическая определенность: существование особей вида в конкретном месте на земном шаре; ареал -район обитания особей данного вида.

3. Экологическая определенность: особи вида живут в конкретном диапазоне значений физических факторов среды, таких как температура, влажность, давление и пр.

4. Дифференцированность: вид состоит из более мелких групп особей.

5. Дискретность: особи данного вида отделены от особей другого разрывом - хиатусом.Хиатус определяется действием изолирующих механизмов, таких как несовпадение сроков размножения, использование специфических поведенческих реакций, стерильность гибридов и др.

6. Воспроизводимость: размножение особей может осуществляться бесполым путем (степень изменчивости низкая) и половым (степень изменчивости высокая, так как каждый организм сочетает признаки отца и матери).

7. Определенный уровень численности: численность претерпевает периодические (волны жизни) и непериодические изменения.

Особи любого вида распределяются в пространстве крайне неравномерно. Например, крапива двудомная в пределах своего ареала встречается только во влажных тенистых местах с плодородной почвой, образуя заросли в поймах Рек, ручьев, вокруг озер, по окраинам топей, в смешанных лесах и зарослях кустарников. Колонии европейского кроте, хорошо заметные по холмикам земли, встречаются на лесных опушках, лугах и полях. Подходящие для жизни
места обитания хоть и встречаются часто в пределах ареала, но не покрывают весь ареал, и поэтому на других его участках особи данного вида не встречаются. Нет смысла искать крапиву в сосновом лесу или крота на болоте.

Таким образом, неравномерность распределения вида в пространстве выражается в виде «островков плотности», «сгущений». Участки с относительно высоким распространением данного вида чередуются с участками с низкой численностью. Такие «центры плотности» населения каждого вида и называются популяциями. Популяция - это совокупность особей данного вида, в течение длительного времени (большого числа поколений) населяющих определенное пространство (часть ареала), и изолированная от других таких же совокупностей.

Внутри популяции практически осуществляется свободное скрещивание (панмиксия). Иными словами, популяция - это группа свободно скрепгдвающихся между собой особей, проживающих длительно на определенной территории, и относительно изолированная от других таких же групп. Вид, таким образом, представляет собой совокупность популяций, а популяция является структурной единицей вида.

Отличие популяции от вида:

1) особи разных популяций свободно скрещиваются друг с другом,

2) особи разных популяций слабо различаются между собой,

3) между двумя соседними популяциями нет разрыва, то есть между ними существует постепенный переход.

Процесс видообразования. Предположим, что данный вид занимает определенный ареал, определяемый характером питания. В результате дивергенции между особями увеличивается ареал. В новом ареале будут находиться участки с различными кормовыми растениями, физико-химическими свойствами и т. д. Особи, оказавшиеся в различных участках ареала, формируют популяции. В дальнейшем, в результате все усиливающегося различия между особями популяций, будет все явственнее, что особи одной популяции отличаются по какому-то признаку от особей другой популяции. Происходит процесс дивергенции популяций. В каждой из них накапливаются мутации.

Представители любого вида в локальной части ареала образуют местную популяцию. Совокупность местных популяций, связанных с однородными по условиям жизни участками ареала, составляет экологическую популяцию. Так, если вид обитает на лугу и в лесу, то говорят о его десной и луговой популяциях. Популяции в пределах ареала вида, связанные с определенными географическими границами, называются географическими популяциями.
Размеры и границы популяций могут резко меняться. При вспышках массового размножения вид расселяется очень широко и возникают гигантские популяции.

Совокупность географических популяций с устойчивыми признаками, способностью скрещиваться и давать плодовитое потомство называется подвидом. Дарвин говорил, что образование новых видов идет через разновидности (подвиды).

Следует, однако, помнить, что в природе часто какой-то элемент отсутствует.
Мутации, происходящие у особей каждого подвида, не могут сами по себе привести к образованию новых видов. Причина кроется в том, что данная мутация будет блуждать по популяции, так как особи подвидов, как мы знаем, репродуктивно не изолированы. Если мутация полезна, она увеличивает гетерозиготность популяции, если вредна, то будет попросту отброшена отбором.

В результате постоянно протекающего мутационного процесса и свободного скрещивания в популяциях накапливаются мутации. Создается, по теории И. И. Шмальгаузена , резерв наследственной изменчивости, т. е. подавляющее большинство возникающих мутаций рецессивны и фенотипически не проявляются. По достижении высокой концентрации мутаций в гетерозиготном состоянии делается вероятным скрещивание особей, несущих рецессивные гены. При этом появляются гомозиготные особи, у которых мутации уже проявляются фенотипически. В этих случаях мутации уже подпадают под контроль естественного отбора.
Но это еще не имеет решающего значения для процессу видообразования, потому что природные популяции являются открытыми и в них постоянно вносятся чужеродны^ гены из соседних популяций.

Имеет место поток генов, дjстаточный для поддержания большого сходства генофондов (совокупность всех генотипов) всех местных популяций. Подсчитано, что пополнение генофонда за счет чужеродных генов в популяции, состоящей из 200 особей, каждая из которых имеет 100 ООО локусов, в 100 раз больше, чем-, за счет мутаций. Вследствие этого ни одна популяция не может резко меняться до тех пор, пока она подвержена нормализующему влиянию потока генов. Устойчивость популяции к изменению ее генетического состава под влиянием отбора называется генетическим гомеостазом.

В результате генетического гомеостаза в популяции образование нового вида сильно затруднено. Должно реализоваться еще одно условие! А именно необходима изоляция генофонда дочерней популяции от материнского генофонда. Изоляция может быть в двух формах: пространственной и временной. Пространственная изоляция возникает благодаря различным географическим барьерам, таким как пустыни, леса, реки, дюны, поймы. Чаще всего пространственная изоляция возникает из-за резкого сокращения сплошного ареала и распадения его на отдельные карманы или ниши.

Часто популяция изолируется в результате миграции. таком случае возникает популяция-изолянт. Однако, по-скольку обычно количество особей в популяции-изолянте евелико, существует опасность инбридинга - вырождения, вязанного с близкородственным скрещиванием. Видооб-азование на основе пространственной изоляции называется географическим.

Во временную форму изоляции входит изменение сроков размножения и сдвиги всего цикла жизни. Видообразование на основе временной изоляции называется экологическим.
Решающим же в обоих случаях является создание новой, несовместимой со старой, генетической системы. Через видообразование реализуется эволюция, вот почему говорят о том, что вид является элементарной эволюционной системой. Популяция - элементарная эволюционная единица!

Статистические и динамические характеристики популяций.

Виды организмов входят в биоценоз не отдельными особями, а популяциями или их частями. Популяция - это часть вида (состоит из особей одного вида), занимающая относительно однородное пространство и способная к саморегулированию и поддержанию определенной численности. Каждый вид в пределах занимаемой территории распадается на популяции.Если рассматривать воздействие факторов среды обитания на отдельно взятый организм, то при определенном уровне фактора (например, температуры) исследуемая особь либо выживет, либо погибнет. Картина меняется при изучении воздействия того же фактора на группу организмов одного вида.

Одни особи погибнут или снизят жизненную активность при одной конкретной температуре, другие - при более низкой, третьи - при более высокой.Поэтому можно дать еще одно определение популяции: все живые организмы, для того чтобы выжить и дать потомство, должны в условиях динамичных режимов экологических факторов существовать в виде группировок, или популяций, т.е. совокупности совместно обитающих особей, обладающих сходной наследственностью.Важнейшим признаком популяции является занимаемая ею общая территория. Но в пределах популяции могут быть более или менее изолированные по разным причинам группировки.

Поэтому дать исчерпывающее определение популяции затруднительно из-за размытости границ между отдельными группами особей. Каждый вид состоит из одной или нескольких популяций, и популяция, таким образом, - это форма существования вида, его наименьшая эволюционирующая единица. Для популяций различных видов существуют допустимые пределы снижения численности особей, за которыми существование популяции становится невозможным. Точных данных о критических значениях численности популяций в литературе нет. Приводимые значения разноречивы. Остается, однако, несомненным факт, что чем мельче особи, тем выше критические значения их численности. Для микроорганизмов это миллионы особей, для насекомых - десятки и сотни тысяч, а для крупных млекопитающих - несколько десятков.

Численность не должна уменьшаться ниже пределов, за которыми резко снижается вероятность встречи половых партнеров. Критическая численность также зависит от других факторов. Например, для некоторых организмов специфичен групповой образ жизни (колонии, стаи, стада). Группы внутри популяции относительно обособлены. Могут иметь место такие случаи, когда численность популяции в целом еще достаточно велика, а численность отдельных групп уменьшена ниже критических пределов.

Например, колония (группа) перуанского баклана должна иметь численность не менее 10 тыс. особей, а стадо северных оленей - 300 - 400 голов. Для понимания механизмов функционирования и решения вопросов использования популяций большое значение имеют сведения об их структуре. Различают половую, возрастную, территориальную и другие виды структуры. В теоретическом и прикладном планах наиболее важны данные о возрастной структуре - соотношение особей (часто объединенных в группы) различных возрастов.

У животных выделяют следующие возрастные группы:

Ювенильная группа (детская) сенильная группа (старческая, не участвующая в воспроизводстве)

Взрослая группа (особи, осуществляющие репродукцию).

Обычно наибольшей жизнеспособностью отличаются нормальные популяции, в которых все возраста представлены относительно равномерно. В регрессивной (вымирающей) популяции преобладают старческие особи, что свидетельствует о наличии отрицательных факторов, нарушающих воспроизводительные функции. Требуются срочные меры по выявлению и устранению причин такого состояния. Внедряющиеся (инвазионные) популяции представлены в основном молодыми особями. Жизненность их обычно не вызывает опасений, но велика вероятность вспышек чрезмерно высокой численности особей, поскольку в таких популяциях не сформировались трофические и другие связи.

Особенно опасно, если это популяция видов, ранее отсутствовавших на данной территории. В таком случае популяции обычно находят и занимают свободную экологическую нишу и реализуют свой потенциал размножения, интенсивно увеличивая численность.Если популяция находится в нормальном или близком к нормальному состоянии, человек может изымать из нее количество особей (у животных) или биомассу (у растений), которая прирастает за промежуток времени между изъятиями. Изыматься должны прежде всего особи послепродуктивного возраста (окончившие размножение). Если преследуется цель получения определенного продукта, то возраст, пол и другие характеристики популяций корректируются с учетом поставленной задачи.

Эксплуатация популяций растительных сообществ (напр., для получения древесины), обычно приурочивается к периоду возрастного замедления прироста (накопления продукции). Этот период обычно совпадает с максимальным накоплением древесной массы на единице площади. Популяции свойственно также определенное соотношение полов, причем соотношение самцов и самок не равно 1:1. Известны случаи резкого преобладания того или иного пола, чередование поколений с отсутствием самцов. Каждая популяция может иметь и сложную пространственную структуру, (подразделяясь на более или менее крупные иерархические группы - от географической до элементарной (микропопуляции) .

Так, если уровень смертности не зависит от возраста особей, то кривая выживания представляет собой снижающуюся линию (см. рисунок, тип I). То есть отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни. Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение в следствие естественной (физиологический) смертности.

Тип II на рисунке. Близкий к этому типу характер кривой выживания свойственен человеку (хотя кривая выживания человека несколько более пологая и, таким образом, является чем-то средним между типами I и II). Этот тип носит названия типа дрозофиллы: именно его демонстрируют дрозофиллы в лабораторных условиях (не поедаемые хищниками). Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие "критический" возраст, демонстрируют низкую смертность и доживают до больших возрастов. Тип носит название типа устрицы. Тип III на рисунке. Изучение кривых выживания представляет большой интерес для эколога. Оно позволяет судить о том, в каком возрасте тот или иной вид наиболее уязвим. Если действие причин, способных изменить рождаемость или смертность, приходится на наиболее уязвимую стадию, то их влияние на последующее развитие популяции будет наибольшим. Эту закономерность необходимо учитывать при организации охоты или в борьбе с вредителями.

Возрастная и половая структуры популяций.

Любой популяции присуща определенная организация. Распределение особей по территории, соотношение групп особей по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают соответствующую структуру популяции : пространственную, половую, возрастную и т.д. Структура формируется с одной стороны на основе общих биологических свойств видов, а с другой - под влиянием абиотических факторов среды и популяций других видов.

Структура популяции имеет, таким образом, приспособительный характер. Разные популяции одного вида имеют как сходные особенности, так и отличительные, характеризующие специфику экологических условий в местах их обитания.

В целом, кроме адаптивных возможностей отдельных особей, на определенных территориях формируются приспособительные черты групповой адаптации популяции как надиндивидуальной системы, что говорит о том, что приспособительные особенности популяции гораздо выше, чем у слагающих ее индивидов.

Возрастной состав — имеет важное значение для существования популяции. Средняя продолжительность жизни организмов и соотношение численности (или биомассы) особей различного возраста характеризуется возрастной структурой популяции. Формирование возрастной структуры происходит в результате совместного действия процессов размножения и смертности.

В любой популяции условно выделяются 3 возрастные экологические группы:

Предрепродуктивную;

Репродуктивную;

Пострепродуктивную.

К предрепродуктивной группе относятся особи, еще не способные к воспроизведению. Репродуктивная - особи, способные к размножению. Пострепродуктивная - особи, утратившие способность к размножению. Длительность этих периодов сильно варьируется в зависимости от вида организмов.

При благоприятных условиях в популяции имеются все возрастные группы и поддерживается более или менее стабильный возрастной состав. В быстро растущих популяциях преобладают молодые особи, а в сокращающихся — старые, уже не способные интенсивно размножаться. Такие популяции малопродуктивны, недостаточно устойчивы.

Имеются виды с простой возрастной структурой популяций, которые состоят из особей практически одного возраста.

Например, все однолетние растения одной популяции весной находятся в стадии проростков, затем почти одновременно зацветают, а осенью дают семена.

У видов со сложнойвозрастной структурой популяций одновременно живут несколько поколений.

Например, в стажах слонов имеются молодые, зрелые и стареющие животные.

Популяции, включающие много генераций (разных возрастных групп) более устойчивы, менее подвержены влиянию факторов, воздействующих на размножение или смертность в конкретном году. Экстремальные условия могут привести к гибели наиболее уязвимых возрастных групп, но самые устойчивые выживают и дают новые генерации.

Например, человек рассматривается как биологический вид, имеющий сложную возрастную структуру. Устойчивость популяций вида проявилось, например, во время второй мировой войны.

Для исследования возpастных стpуктуp популяций используют гpафические пpиемы, напpимеp возpастные пиpамиды популяции, шиpоко используемые в демогpафических исследованиях (рис.3.9).

Рис.3.9. Возрастные пирамиды популяции.

А - массовое размножение, В - стабильная популяция, С - сокращающаяся популяция

Устойчивость популяций вида в значительной степени зависит и от половой структуры , т.е. соотношения особей разных полов. Половые группировки внутри популяций формируются на базе различий в морфологии (форма и строение тела) и экологии различных полов.

Например, у некоторых насекомых самцы имеют крылья, а самки нет, у самцов некоторых млекопитающих имеются рога, но они отсутствуют у самок, у самцов птиц яркое оперение, а у самок маскирующее.

Экологические различия выражаются в пищевых предпочтениях (самки многих комаров сосут кровь, а самцы питаются нектаром).

Генетический механизм обеспечивает примерно равное соотношение особей обоих полов при рождении. Однако исходное соотношение вскоре нарушается в результате физиологических, поведенческих и экологических различий самцов и самок, вызывающих неравномерную смертность.

Анализ возрастной и половой структуры популяций позволяет прогнозировать ее численность на ряд ближайших поколений и лет. Это важно при оценке возможностей промысла рыбы, отстрела животных, спасения урожая от нашествий саранчи и в других случаях.

Высокие температуры вредны почти для всего живого. Повышения температуры среды до +50 °С оказывается вполне достаточно, чтобы вызвать угнетение и гибель самых разнообразных организмов. Не приходится говорить о более высоких температурах.

Пределом распространения жизни считается температурная отметка +100 °С, при которой происходит денатурация белка, то есть разрушение структуры белковых молекул. В течение длительного периода считалось, что в природе нет таких существ, которые бы спокойно переносили температуры в интервале от 50 до 100 °С. Однако последние открытия ученых говорят об обратном.

Сначала были открыты бактерии, приспособленные к жизни в горячих источниках с температурой воды до +90 ºС. В 1983 году произошло другое крупное научное открытие. Группа американских биологов проводила изучение находящихся на дне Тихого океана источников термальных вод, насыщенных металлами.

Похожие на усеченные конусы черные курильщики находятся на глубине 2000 м. Их высота равна 70 м, а диаметр основания равен 200 м. Впервые курильщики были открыты у Галапагосских островов.

Расположенные на большой глубине, эти «черные курильщики», как их называют геологи, активно вбирают в себя воду. Здесь она разогревается за счет тепла, идущего от глубинного раскаленного вещества Земли, и принимает температуру более +200 °С.

Вода в источниках не кипит только потому, что находится под большим давлением и обогащается металлами из недр планеты. Над «черными курильщиками » возвышается столб воды. Создаваемое здесь, на глубине порядка 2000 м (и даже много большей) давление равно 265 атм. При столь высоком давлении не закипают даже минерализованные воды некоторых источников, имеющие температуру до +350 °С.

В результате смешения с океанской водой термальные воды сравнительно быстро остывают, но обнаруженные американцами на этих глубинах бактерии стараются держаться от остывшей воды подальше. Удивительные микроорганизмы приспособились питаться минеральными веществами в тех водах, которые нагреты до +250 °С. Более низкие температуры действуют на микробов угнетающе. Уже в воде с температурой порядка +80 °С бактерии, хотя и сохраняют жизнеспособность, но перестают размножаться.

Ученые не знают точно, в чем секрет фантастической выносливости этих крохотных живых существ, которые легко переносят нагрев до температуры плавления олова.

Форма тела бактерий, населяющих черных курильщиков, неправильная. Часто организмы снабжены длинными выростами. Бактерии поглощают серу, превращая ее в органику. Погонофоры и вестиментиферы образовали симбиоз с ними, чтобы поедать эту органику.

Тщательные биохимические исследования позволили выявить наличие защитного механизма в бактериальных клетках. Молекула вещества наследственности ДНК, на которой хранится генетическая информация, у ряда видов обволакивается слоем белка, поглощающего избыточную теплоту.

Сама ДНК включает в себя аномально высокое содержание пар гуанин-цитозин. У всех прочих живых существ на нашей планете число этих объединений внутри ДНК гораздо меньше. Оказывается, связь между гуанином и цитозином очень сложно разрушить путем нагревания.

Поэтому большинство таких соединений просто служит цели упрочнения молекулы и только потом цели кодирования генетической информации.

Аминокислоты служат составными частями молекул белка, в которых удерживаются благодаря особым химическим связям. Если сравнить белки глубоководных бактерий с аналогичными по перечисленным выше параметрам белками других живых организмов, то выяснится, что за счет дополнительных аминокислот в белках высокотемпературных микробов имеются дополнительные связи.

Но специалисты уверены, что секрет бактерий вовсе не в этом. Нагрева клеток в пределах +100 - 120º С вполне достаточно, чтобы повредить ДНК, защищенную перечисленными химическими приспособлениями. Это означает, что внутри бактерий должны иметься и другие способы избежать разрушения их клеток. Белок, из которого состоят микроскопические жители термальных источников, включает в себя особые частицы - аминокислоты такого вида, которые не встречаются больше ни у одного другого существа, обитающего на Земле.

Особую защиту имеют молекулы белков бактериальных клеток, обладающие специальными защитными (укрепляющими) компонентами. Необычно устроены липиды, то есть жиры и жироподобные вещества. Их молекулы представляют собой объединенные цепочки атомов. Химический анализ липидов высокотемпературных бактерий показал, что в этих организмах липидные цепочки переплетаются между собой, что служит дополнительному укреплению молекул.

Впрочем, данные анализов можно понимать и по-другому, поэтому гипотеза о переплетенных цепочках пока остается недоказанной. Но и даже в том случае, если принять ее за аксиому, этим невозможно полностью объяснить механизмы адаптации к температурам порядка +200 °С.

Более высокоразвитые живые существа не смогли достичь успехов микроорганизмов, однако зоологам известно немало беспозвоночных и даже рыб, адаптировавшихся к жизни в термальных водах.

Среди беспозвоночных необходимо назвать в первую очередь разнообразных пещерных жителей, населяющих водоемы, подпитываемые грунтовыми водами, которые нагреваются подземным теплом. Это в большинстве случаев мельчайшие одноклеточные водоросли и всевозможные ракообразные.

Представитель равноногих ракообразных термосферома термальная относится к семейству сфероматид. Он обитает в одном горячем источнике в Соккоро (штат Нью-Мексико, США). Длина рачка составляет всего лишь 0,5-1 см. Передвигается он по дну источника и имеет одну пару антенн, предназначенных для ориентации в пространстве.

Пещерные рыбы, приспособленные к жизни в термальных источниках, переносят температуру до +40 °С. Среди этих существ наиболее примечательны некоторые карпозубообразные, населяющие подземные воды Северной Америки. Среди видов этой обширной группы выделяется кипринодон макулярис.

Это один из редчайших животных Земли. Небольшая популяция этих крохотных рыбок живет в горячем источнике, имеющем глубину всего 50 см. Данный источник находится внутри Дьявольской пещеры в Долине смерти (Калифорния), одном из наиболее засушливых и знойных мест на планете.

Близкая родственница кипринодонов слепоглазка не приспособилась к жизни в термальных источниках, хотя и населяет подземные воды карстовых пещер в том же географическом районе в пределах Соединенных Штатов. Слепоглазка и родственные ей виды выделены в семейство слепоглазковых, тогда как кипринодоны причислены к обособленному семейству карпозубых.

В отличие от прочих полупрозрачных или молочно-кремовых по расцветке пещерных обитателей, в том числе и прочих карпозубообразных, кипринодоны окрашены в ярко-синий цвет. В прежние времена эти рыбки водились в нескольких источниках и могли свободно перемещаться по грунтовым водам из одного водоема в другой.

Местные жители в XIX веке не раз наблюдали, как в лужах, возникавших в результате заполнения подземными водами колеи от колеса повозки, поселялись кипринодоны. Кстати, и по сей день остается неясным, как и зачем эти красивые рыбки пробирались вместе с подземной влагой сквозь слой рыхлой почвы.

Однако эта загадка не главная. Непонятно, как рыбы могут выдерживать температуру воды до +50 °С. Как бы то ни было, именно странное и необъяснимое приспособление помогло кипринодонам выжить. Эти существа появились в Северной Америке более 1 млн лет назад. С началом оледенения вымерли все карпозубообразные, кроме тех, кто освоил подземные воды, включая и термальные.

Почти все виды семейства стеназеллид, представленного мелкими (не более 2 см) равноногими ракообразными, живут в термальных водах с температурой не ниже +20 С.

Когда ледник ушел, а климат в Калифорнии стал более засушливым, в пещерных источниках на протяжении 50 тыс. лет сохранялись почти неизменными температура, соленость и даже количество корма - водорослей. Поэтому рыбки, не меняясь, спокойно пережили здесь доисторические катаклизмы. Сегодня все виды пещерных кипринодонов охраняются законом в интересах науки.

Для тех, кто не интересуется животными, а ищет где бы купить подарок к Новому году подешевле промокод Групон обязательно придется очень кстати.

Некоторые организмы, если сравнивать их с другими, обладают рядом неоспоримых преимуществ, например, способностью выдерживать крайне высокие или низкие температуры. Таких выносливых живых существ в мире есть очень много. В статье ниже вы познакомитесь с самыми удивительными из них. Они, без преувеличения, способны выживать даже в экстремальных условиях.

1. Гималайские пауки-скакуны

Горные гуси, как известно, являются одними из самых высоко летающих птиц в мире. Они способны летать на высоте более 6 тысяч метров над землёй.

А знаете ли Вы, где находится высочайший населённый пункт на Земле? В Перу. Это город Ла-Ринконада, расположенный в Андах недалеко от границы с Боливией на высоте около 5100 метров над уровнем моря.

Между тем, рекорд самых высоко живущих существ на планете Земля достался Гималайским паукам-скакунам Эуофрис омнисуперстес (Euophrys omnisuperstes – «стоящие надо всем»), которые обитают в укромных уголках и трещинах на склонах горы Эверест. Альпинисты находили их даже на высоте 6700 метров. Эти крошечные пауки питаются насекомыми, которых заносит на горную вершину сильным ветром. Они являются единственными живыми существами, постоянно обитающими на такой огромной высоте, не считая, конечно, некоторые виды птиц. Известно также, что Гималайские пауки-скакуны способны выжить даже в условиях недостатка кислорода.

2. Гигантский кенгуровый прыгун

Когда нас просят назвать животное, которое способно обходиться без питьевой воды длительные периоды времени, первое, что приходит на ум – это верблюд. Однако в пустыне без воды он может продержаться не более 15 дней. И нет – верблюды не хранят запасы воды в своих горбах, как многие ошибочно полагают. Меж тем, на Земле всё же есть такие животные, которые живут в пустыне и способны прожить без единой капли воды в течение всей жизни!

Гигантские кенгуровые прыгуны являются родственниками бобров. Продолжительность их жизни составляет от трёх до пяти лет. Воду гигантские кенгуровые прыгуны получают вместе с пищей, а питаются они преимущественно семенами.

Гигантские кенгуровые прыгуны, как отмечают учёные, не потеют вовсе, поэтому они не теряют, а, наоборот, накапливают воду в организме. Найти их можно в Долине Смерти (штат Калифорния). Гигантские кенгуровые прыгуны в данный момент находятся под угрозой исчезновения.

3. Черви, устойчивые к высоким температурам

Поскольку вода проводит тепло от тела человека примерно в 25 раз более эффективно, чем воздух, то температура, равная 50 градусам Цельсия, в глубинах моря будет намного опаснее, нежели на суше. Именно поэтому под водой процветают бактерии, а не многоклеточные организмы, которые не выдерживают слишком высоких температур. Но есть и исключения…

Морские глубоководные кольчатые черви Паральвинелла сульфинкола (Paralvinella sulfincola), которые обитают рядом с гидротермальными источниками на дне Тихого океана, возможно, являются самыми теплолюбивыми живыми существами на планете. Результаты проведённого учёными эксперимента с нагреванием аквариума показали, что эти черви предпочитают селиться там, где температура достигает 45-55 градусов Цельсия.

4. Гренландская полярная акула

Гренландские полярные акулы являются одними из крупнейших живых существ на планете Земля, однако учёные практически ничего о них знают. Они плавают очень медленно, наравне с обычным пловцом-любителем. Тем не менее, увидеть гренландских полярных акул в океанских водах почти не представляется возможным, поскольку они, как правило, обитают на глубине, равной 1200 метрам.

Гренландские полярные акулы также считаются самыми холодолюбивыми существами в мире. Они предпочитают обитать в местах, где температура достигает 1-12 градусов Цельсия.

Гренландские полярные акулы живут в холодных водах, следовательно, им приходится экономить энергию; это объясняет тот факт, что плавают они весьма медленно – со скоростью не более двух километров в час. Гренландских полярных акул ещё называют «спящими акулами». В еде они не разборчивы: питаются всем, что удастся поймать.

По мнению некоторых учёных, продолжительность жизни Гренландских полярных акул может достигать 200 лет, однако пока это не было доказано.

5. Дьявольские черви

На протяжении нескольких десятилетий учёные думали, что только одноклеточные организмы способны выживать на очень больших глубинах. Считалось, что многоклеточные формы жизни там не могут обитать из-за недостатка кислорода, давления и высоких температур. Тем не менее, совсем недавно исследователи обнаружили на глубине нескольких тысяч метров от поверхности земли микроскопических червей.

Нематоды Halicephalobus mephisto, названные в честь демона из немецкого фольклора, были обнаружены Гаэтаном Боргони и Таллисом Онстоттом в 2011 году в пробах воды, взятой на глубине 3,5 километра в одной из пещер Южной Африки. Учёные выяснили, что они проявляют высокую стойкость в различных экстремальных условиях, как и те круглые черви, которые пережили катастрофу шаттла «Колумбия», произошедшую 1 февраля 2003 года. Обнаружение дьявольских червей может способствовать расширению области поиска жизни на Марсе и любой другой планете нашей Галактики.

6. Лягушки

Учёные заметили, что некоторые виды лягушек в буквальном смысле замерзают с наступлением зимы и, оттаивая весной, возвращаются к полноценной жизни. В Северной Америке насчитывается пять видов таких лягушек, наиболее распространённым из них является Rana sylvatica, или Лесная лягушка.

Лесные лягушки не умеют зарываться в землю, поэтому с наступлением холодов они просто прячутся под опавшие листья и замерзают, как и всё вокруг. Внутри организма у них срабатывает естественный «антифризовый» защитный механизм, и они, как компьютер, переходят в «спящий режим». Пережить зиму им во многом позволяют запасы глюкозы в печени. Но самым удивительным является то, что Лесные лягушки проявляют свою удивительную способность как в дикой природе, так и в лабораторных условиях.

7. Глубоководные бактерии

Все мы знаем, что глубочайшей точкой Мирового океана является Марианская впадина, которая находится на глубине более 11 тысяч метров. У её дна давление воды достигает 108,6 МПа, что примерно в 1072 раза больше нормального атмосферного давления на уровне Мирового океана. Несколько лет назад учёные при помощи камер высокого разрешения, помещённых в стеклянные сферы, обнаружили в Марианской впадине гигантских амёб. По мнению Джеймса Кэмерона, возглавлявшего экспедицию, в ней также процветают и другие формы жизни.

Изучив пробы воды со дна Марианской впадины, учёные обнаружили в ней огромное количество бактерий, которые, на удивление, активно размножались, несмотря на большую глубину и экстремальное давление.

8. Bdelloidea

Коловратки Bdelloidea – небольшие беспозвоночные животные, которые обычно встречаются в пресной воде.

У представителей коловраток Bdelloidea самцы отсутствуют, популяции представлены лишь партеногенетическими самками. Bdelloidea размножаются бесполым способом, что, по мнению учёных, негативно влияет на их ДНК. А какой самый лучший способ побороть эти вредные последствия? Ответ: съесть ДНК других форм жизни. Благодаря такому подходу, у Bdelloidea развилась удивительная способность выдерживать экстремальное обезвоживание. Более того, они могут выжить даже после получения смертельной для большинства живых организмов дозы радиации.

Учёные считают, что способность Bdelloidea к репарации ДНК была изначально дана им для выживания в условиях высоких температур.

9. Тараканы

Существует популярный миф о том, что после ядерной войны на Земле в живых останутся только тараканы. Эти насекомые способны неделями обходиться без еды и воды, однако ещё больше поражает тот факт, что они могут жить много дней спустя после того, как лишатся своей головы. Тараканы появились на Земле 300 миллионов лет назад, даже раньше, чем динозавры.

Ведущие «Разрушителей легенд» в одной из передач решили проверить тараканов на живучесть в ходе нескольких экспериментов. Сначала они подвергли определённое количество насекомых излучению в 1000 рад – дозе, способной убить здорового человека за считанные минуты. Из них выжить удалось почти половине. После Разрушители легенд увеличили мощность излучения до 10 тысяч рад (как при атомной бомбардировке Хиросимы). На этот раз выжило всего 10 процентов тараканов. Когда мощность излучения достигла 100 тысяч рад, ни одному таракану, к сожалению, остаться в живых не удалось.